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We present a virtual element method (VEM) for a nonlocal reaction–diffusion system of the cardiac
electric field. For this system, we analyze an H1-conforming discretization by means of VEM that can
make use of general polygonal meshes. Under standard assumptions on the computational domain, we
establish the convergence of the discrete solution by considering a series of a priori estimates and by
using a general Lp compactness criterion. Moreover, we obtain optimal order space-time error estimates
in the L2 norm. Finally, we report some numerical tests supporting the theoretical results.
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1. Introduction

Reaction–diffusion systems appear in models of different areas such as medicine, engineering, biology,
physics, etc. The study of this kind of system has attracted a lot of attention for a number of years,
systems with different types of diffusion, for example, constant, nonlocal and cross. Mathematical
models related to electrical activity in the heart (cardiac tissue) are becoming a powerful tool to study
and understand many types of heart diseases, as for example, irregular heart rhythm.

The reaction–diffusion system of the FitzHugh–Nagumo type (FitzHugh, 1961; Nagumo et al.,
1962) is one of the most important and well-known generic models in physiology that describes
complex wave phenomena in excitable or oscillatory media. This model is a reaction–diffusion system
that is a simplification of the famous Hodgkin–Huxley model, which has been used to describe the
propagation of the electrical potential in cardiac tissue (Hastings, 1975; Peskin, 1975; Sanfelici, 2002;
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Coudiére & Pierre, 2006). The FitzHugh–Nagumo reaction–diffusion system consists of one nonlinear
parabolic partial differential equation (PDE) that describes the dynamic of the membrane potential,
coupled with an ordinary differential equation that models the ionic currents associated with the reaction
term. The main difficulties associated with solving this system are related to the coupling of the
equations through a nonlinear term and the regularity of the solution that is low.

In this paper, we analyze a virtual element method (VEM) for a nonlinear parabolic problem
arising in cardiac models (electrophysiology) with nonlocal diffusion (see system (2.1) below). In our
study, the self-diffusion coefficient is assumed depending on the total of electrical potential in the
heart. The VEM, recently introduced in Beirão da Veiga et al. (2013a, 2014a), is a generalization
of the finite element method that is characterized by the capability of dealing with very general
polygonal/polyhedral meshes. In recent years, the interest in numerical methods that can make use of
general polygonal/polyhedral meshes for the numerical solution of PDEs has undergone a significant
growth; this is because of the high flexibility that this kind of mesh allows in the treatment of
complex geometries. Among the large number of papers on this subject, we cite as a minimal sample
Sukumar & Tabarraei (2004); Talischi et al. (2010); Cangiani et al. (2014); Beirão da Veiga et al. (2014b)
and Di Pietro & Ern (2015).

Although the VEM is very recent, it has been applied to a large number of problems; for instance,
VEM for Stokes, Brinkman, Cahn–Hilliard, plates bending, advection–diffusion, Helmholtz, parabolic
and hyperbolic problems have been introduced in Brezzi & Marini (2012); Antonietti et al. (2014, 2016);
Vacca & Beirão da Veiga (2015); Benedetto et al. (2016); Perugia et al. (2016); Brenner et al. (2017);
Cáceres & Gatica (2017); Cáceres et al. (2017); Cangiani et al. (2017b); Vacca (2017, 2018); Beirão
da Veiga et al. (2017b, 2019); VEM for spectral problems in Mora et al. (2015, 2018); Beirão da Veiga
et al. (2017c); Gardini & Vacca (2018) and VEM for linear and nonlinear elasticity in Beirão da Veiga
et al. (2013b, 2015); Gain et al. (2014); Wriggers et al. (2016), Artioli et al. (2017) whereas a posteriori
error analyses have been developed in Beirão da Veiga & Manzini (2015); Berrone & Borio (2017);
Cangiani et al. (2017a); Mora et al. (2017).

Over the past years, some papers related to numerical tools for solving this model and its variations
have appeared. For example, in Chrysafinos et al. (2013) a continuous in space and discontinuous in
time Galerkin method of arbitrary order has been developed, and under minimal regularity assumptions,
space-time error estimates are established in the natural norms. In Jackson (1992) some estimates in
the L2 norm for semidiscrete Galerkin approximations for the FitzHugh–Nagumo model are derived.
Moreover, Sanfelici (2002) presented the convergence analysis and a priori stability estimates for the
semidiscrete solution given by a finite element Galerkin approximation applied to the bidomain model.
In Coudiére & Pierre (2006), stability conditions and convergence results of a finite volume method for
reaction–diffusion systems in electrocardiology are given. A finite difference method has been presented
in Barkley (1991), Chebyshev multidomain method has been presented in Olmos & Shizgal (2009),
fully space-time adaptive multiresolution methods based on the finite volume method and Barkley’s
method for simulating the complex dynamics of waves in excitable media in Burger et al. (2010). Finally,
Thomée (1997) has presented other methods related to the numerical analysis of general semilinear
parabolic PDE.

Numerical methods to solve these kind of models have limitations in the range of applicable
meshes. In particular, finite element methods rely on triangular (simplicial) or quadrilateral meshes.
Moreover, the classical finite volume method has some restriction on the admissible meshes (for
instance, orthogonality constraints). However, in complex simulations like fluid–structure interaction,
phase change, medical applications and many others, the geometrical complexity of the domain is a
relevant issue when PDEs have to be solved on a good quality mesh; hence, it can be convenient to use
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1546 V. ANAYA ET AL.

more general polygonal/polyhedral meshes. Thus, in the present contribution, we are going to introduce
and analyze a VEM that has the advantage of using general polygonal meshes to solve a nonlinear
parabolic FitzHugh–Nagumo system, where the diffusion coefficient depends on a nonlocal quantity.
The study of nonlocal diffusion problems has received considerable attention in recent years since
they appear in important physical and biological applications (Chipot & Lovat, 1997; Chipot, 2000;
Anaya et al., 2015a,b). There are models of the FitzHugh–Nagumo type that also take into account the
nonlocal diffusion phenomena; for example, Liu et al. (2015) considered a diffusive nonlocal term as
fractional diffusion, and Oshita & Ohnishi (2003) took a nonlocal reactive term.

The aim of this paper is to introduce and analyze a conforming H1(Ω)-VEM that applies to general
polygonal meshes for the two-dimensional nonlocal reaction–diffusion FitzHugh–Nagumo equations.
We propose a space discretization by means of VEM, which is based on the discrete space introduced
in Ahmad et al. (2013) for the linear reaction–diffusion equation. We construct a proper L2-projection
operator that is used to approximate the bilinear form that appears for the time derivative discretization,
which is obtained by a classical backward Euler method. We also use that projection to discretize the
nonlocal term presented in the system. We prove that the fully discrete scheme is well posed, and using
standard space and time translates together with a priori estimates for the discrete solution; it is estab-
lished convergence of the discrete scheme to the weak solution of the model. Due to the nonLipschitz of
the nonlinear term (the ionic function) in the FitzHugh–Nagumo model, we need to relax the assumption
on the nonlinearity to establish optimal order space-time error estimates in the L2 norm.

The structure of the paper is organized as follows. In Section 2, we give some preliminaries and
assumptions on the data. Moreover, we introduce the concept of weak solution. In Section 3, we propose
the semidiscrete and fully discrete VEM. In Section 4, we prove the existence and convergence of the
discrete solution. In Section 5, we give error estimates, and finally, in Section 6, some numerical results.

Throughout the article we will denote with c and C, with or without subscripts, tildes or hats, generic
constants independent of the mesh parameter h and the time step Δt, which may take different values
in different occurrences. Moreover, let Ω ⊂ R

2 be a polygonal domain; we will consider the following
spaces: by Hm(Ω), we denote the usual Sobolev space of order m. Given T > 0 and 1 ≤ p ≤ ∞,
L p(0, T;R) denotes the space of L p integrable functions from the interval [0, T] into R.

2. Model problem and weak solution

Fix a final time T > 0 and a bounded domain Ω ⊂ R
2 with polygonal boundary Σ and outer unit

normal vector n. For all (x, t) ∈ ΩT := Ω × (0, T), v = v(x, t) and w = w(x, t) stand for the
transmembrane potential and the gating variable, respectively. The governing equations of the nonlocal
reaction–diffusion FitzHugh–Nagumo system are⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tv − D

(∫
Ω

v(x, t) dx

)
Δv + Iion(v, w) = Iapp(x, t) (x, t) ∈ ΩT ,

∂tw − H(v, w) = 0 (x, t) ∈ ΩT ,

D

(∫
Ω

v(x, t) dx

)
∇v · n = 0 (x, t) ∈ ΣT := Σ × (0, T),

v(x, 0) = v0(x) x ∈ Ω ,

w(x, 0) = w0(x) x ∈ Ω .

(2.1)

Herein, Iapp(x, t) ∈ L2(ΩT) is the stimulus. In this work, the diffusion rate D > 0 is supposed to depend
on the whole of the transmembrane potential in the domain rather than on the local diffusion, i.e., the
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diffusion of the transmembrane potential is guided by the global state of the potential in the medium.
We assume that D : R → R is a continuous function satisfying the following: there exist constants
d1, d2 > 0 such that

d1 ≤ D and
∣∣D(I1) − D(I2)

∣∣ ≤ d2

∣∣I1 − I2

∣∣ for all I1, I2 ∈ R. (2.2)

Now, we make some assumptions on the data of the nonlocal FitzHugh–Nagumo model. For
the ionic current Iion(v, w), we assume that it can be decomposed into I1,ion(v) and I2,ion(w), where
Iion(v, w) = I1,ion(v) + I2,ion(w). We assume that I1,ion, I2,ion : R → R and H : R2 → R are continuous
functions and that there exist constants α1, α2, α3, α4 > 0 such that

(a)
1

α1
|v| 4 ≤ ∣∣I1,ion(v)v

∣∣ ≤ α2

(
|v| 4 + 1

)
,

(b)
∣∣I2,ion(w)

∣∣ ≤ α3(|w| + 1),

(c) ∀ z, s ∈ R (I1,ion(z) − I1,ion(s))(z − s) ≥ −Ch|z − s|2,

(d) |H(v, w)| ≤ α4(|v| + |w| + 1).

(2.3)

It is well known that if the initial condition v0 ∈ L∞(Ω) and the functions are specified as follows:

H(v, w) = av − bw, (2.4)

and

Iion(v, w) = −λ(w − v(1 − v)(v − θ)), (2.5)

where a, b, λ, θ are given parameters. Then the assumptions (2.3) are fulfilled.
The weak solution to the model (2.1) is defined as follows.

Definition 2.1 (Weak solution). A weak solution to the system (2.1) is a double function (v, w) such

that v ∈ L2(0, T; H1(Ω)) ∩ L4(ΩT), ∂tv ∈ L2(0, T; (H1(Ω)′)) + L
4
3 (ΩT), w ∈ C([0, T]; L2(Ω)) and

satisfying the following weak formulation:

∫∫
ΩT

∂tv ϕ +
∫ T

0
D

(∫
Ω

v(x, t) dx

)∫
Ω

∇v · ∇ϕ +
∫∫

ΩT

Iion(v, w)ϕ =
∫∫

ΩT

Iapp(x, t)ϕ,

∫∫
ΩT

∂tw φ −
∫∫

ΩT

H(v, w)φ = 0,

(2.6)

for all ϕ ∈ L2(0, T; H1(Ω)) ∩ L4(ΩT) and φ ∈ C([0, T]; L2(Ω)).

Remark 2.2 Note that, in view of the conditions stated in (2.3), we can easily check that Definition 2.1
makes sense. Furthermore, observe that Definition 2.1 implies v ∈ C([0, T]; L2(Ω)) (see Schoenbek,
1978).

D
ow

nloaded from
 https://academ

ic.oup.com
/im

ajna/article-abstract/40/2/1544/5309005 by guest on 29 April 2020



1548 V. ANAYA ET AL.

3. Virtual element scheme and main result

In this section, we recall the mesh construction and the assumptions considered to introduce the discrete
virtual element space. Then we present the virtual element approximation of the FitzHugh–Nagumo
model.

3.1 The VEM semidiscrete problem

Let
{
Th

}
h be a sequence of decompositions of Ω into polygons K. Let hK denote the diameter of the

element K and h the maximum of the diameters of all the elements of the mesh, i.e., h := maxK∈Th
hK .

In what follows, we denote by NK the number of vertices of K, by e a generic edge of Th and for all
e ∈ ∂K, we define a unit normal vector ne

K that points outside of K.
For the analysis, we will make the following assumptions as in Beirão da Veiga et al. (2013a, 2017c):

there exists a positive real number CT such that, for every h and every K ∈ Th,

A1: the ratio between the shortest edge and the diameter hK of K is larger than CT ;

A2: K ∈ Th is star-shaped with respect to every point of a ball of radius CT hK .

For any subset S ⊆ R
2 and non-negative integer k, we indicate by Pk(S) the space of polynomials of

degree up to k defined on S.
Now, we consider a simple polygon K (meaning open simply connected set whose boundary is a

nonintersecting line made of a finite number of straight line segments), and we start by introducing a
preliminary virtual element space. For all K ∈ Th, the local space Vk|K is defined by (see Ahmad et al.,
2013)

Vk|K :=
{
ϕ ∈ H1(K) ∩ C0(K) : ϕ|e ∈ Pk(e) ∀ e ∈ ∂K, Δϕ ∈ Pk(K)

}
.

Now, we introduce the following set of linear operators from Vk|K into R. For all ϕ ∈ Vk|K ,

• D1: the values of ϕ at the vertices of K;

• D2: values of ϕ at k − 1 distinct points in e, for all e ∈ ∂K;

• D3: all moments
∫

K ϕp dx, for all p ∈ Pk−2(K).

Now, we split the bilinear form a(·, ·) := (∇·, ∇·)0,Ω ,

a(v, ϕ) :=
∑

K∈Th

aK(v, ϕ), ∀ v, ϕ ∈ H1(Ω),

where

aK(v, ϕ) :=
∫

K
∇v · ∇ϕ, ∀ v, ϕ ∈ H1(Ω).

For the analysis we will introduce the following broken seminorm:

|ϕ|1,h :=
⎛
⎝∑

K∈Th

|ϕ|21,K

⎞
⎠

1/2

.
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Let ΠK,k : Vk|K → Pk(K) be the projection operator defined by

{
aK(ΠK,kv, q) = aK(v, q) ∀ q ∈ Pk(K),

P0(ΠK,kv) = P0v,
(3.1)

where P0 can be taken as

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

P0v := 1
NK

NK∑
i=1

v(Vi) k = 1,

P0v := 1
|K|

∫
K

v dx k > 1,

with Vi the vertices of K, 1 ≤ i ≤ NK , where NK is the number of vertices in K.

Remark 3.1 The above definition of P0 is only needed for the problem (3.1) to be well posed. We
note that it is possible to consider alternative definitions for P0. In particular, a possible computable
definition, valid for any k, is to take the following average on the boundary:

P0v := 1

|∂K|
∫

∂K
v,

which makes sense for any v ∈ H1(K).

Using an integration by parts, it is easy to check that, for any ϕ ∈ Vk|K , the values of the linear
operators D1, D2 and D3 given before are sufficient in order to compute ΠK,k. As a consequence, the
projection operator ΠK,k depends only on the values of the operators D1, D2 and D3.

Now, we introduce our virtual local space (see Ahmad et al., 2013)

Wk|K :=
{
ϕ ∈ Vk|K :

∫
K
(ΠK,kϕ)q dx =

∫
K

ϕq dx ∀ q ∈ Pk/Pk−2(K)

}
,

where the symbol Pk/Pk−2(K) denotes the polynomials of degree k living on K that are L2-orthogonal
to all polynomials of degree k − 2 on K. We observe that, since Wk|K ⊂ Vk|K , the operator ΠK,k is well
defined on Wk|K and computable only on the basis of the values of the operators D1, D2 and D3.

In Ahmad et al. (2013) has been established that the operators D1, D2 and D3 constitute a set of
degrees of freedom for the space Wk|K .

The global discrete space will be

Wh :=
{
ϕ ∈ H1(Ω) : ϕ|K ∈ Wk|K , ∀ K ∈ Th

}
.

In agreement with the local choice of the degrees of freedom, in Wh we choose the following degrees of
freedom:

• DG1: the values of ϕ at the vertices of Th;

• DG2: values of ϕ at k − 1 distinct points in e, for all e ∈ Th;

• DG3: all moments
∫

K ϕp dx, for all p ∈ Pk−2(K) on each element K ∈ Th.
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1550 V. ANAYA ET AL.

On the other hand, let SK(·, ·) and SK
0 (·, ·) be any symmetric positive definite bilinear forms to be

chosen as to satisfy

c0aK(ϕh, ϕh) ≤ SK(ϕh, ϕh) ≤ c1aK(ϕh, ϕh) ∀ϕh ∈ Vk|K with ΠK, kϕh = 0, (3.2)

c̃0(ϕh, ϕh)0,K ≤ SK
0 (ϕh, ϕh) ≤ c̃1(ϕh, ϕh)0,K ∀ϕh ∈ Vk|K , (3.3)

for some positive constants c0, c1, c̃0 and c̃1 independent of K.
We define the local discrete bilinear and trilinear forms

aK
h (·, ·) : Wh × Wh → R, mK

h (·, ·) : Wh × Wh → R,

bK
h (·, ·, ·) : Wh × Wh × Wh → R, cK

h (·, ·, ·) : Wh × Wh × Wh → R,

as follows, for all vh, wh, ϕh ∈ Wk|K :

aK
h (vh, ϕh) := aK(ΠK,kvh, ΠK,kϕh) + SK(vh − ΠK,kvh, ϕh − ΠK,kϕh),

mK
h (vh, ϕh) :=

(
Π0

K,kvh, Π0
K,kϕh

)
0,K

+ SK
0

(
vh − Π0

K,kvh, ϕh − Π0
K,kϕh

)
,

bK
h (vh, wh, ϕh) :=

∫
K

Iion

(
Π0

K,kvh, Π0
K,kwh

)
Π0

K,kϕh,

cK
h (vh, wh, ϕh) :=

∫
K

H
(
Π0

K,kvh, Π0
K,kwh

)
Π0

K,kϕh,

where Π0
K,k : Wk|K → Pk(K) is the standard L2-projection operator. We note that all the forms

introduced above are computable on the basis of the degrees of freedom (see Ahmad et al., 2013;
Vacca & Beirão da Veiga, 2015).

We observe that for all K ∈ Th it holds the following:

• k-consistency: for all p ∈ Pk(K) and for all ϕh ∈ Wk|K ,

aK
h ( p, ϕh) = aK( p, ϕh),

mK
h ( p, ϕh) = ( p, ϕh)0,K ;

(3.4)

• stability: there exist four positive constants, α′, α′′, β ′ and β ′′, independent of h, such that for all
ϕh ∈ Wk|K ,

α′ aK(ϕh, ϕh) ≤ aK
h (ϕh, ϕh) ≤ α′′ aK(ϕh, ϕh),

β ′ (ϕh, ϕh)0,K ≤ mK
h (ϕh, ϕh) ≤ β ′′ (ϕh, ϕh)0,K .

(3.5)

D
ow

nloaded from
 https://academ

ic.oup.com
/im

ajna/article-abstract/40/2/1544/5309005 by guest on 29 April 2020



A VEM FOR A NONLOCAL FITZHUGH–NAGUMO MODEL 1551

Then we set for all vh, wh, ϕh ∈ Wh,

ah(vh, ϕh) :=
∑

K∈Th

aK
h (vh, ϕh), mh(vh, ϕh) :=

∑
K∈Th

mK
h (vh, ϕh),

bh(vh, wh, ϕh) :=
∑

K∈Th

bK
h (vh, wh, ϕh), ch(vh, wh, ϕh) :=

∑
K∈Th

cK
h (vh, wh, ϕh).

We discretize the nonlocal diffusion term using the L2-projection as follows:

J(vh) :=
∫

Ω

vh =
∑

K∈Th

∫
K

Π0
K,kvh, vh ∈ Wh. (3.6)

For the right-hand side, since Iapp(x, t) ∈ L2(ΩT), we set

Iapp,h(t) = Π0
k Iapp(·, t) for a.e. t ∈ (0, T),

where we have introduced Π0
k as the following operator that is defined in L2 by

(Π0
k g)|K := Π0

K,kg for all K ∈ Th (3.7)

with Π0
K,k the L2(K)-projection.

Now, we note that the symmetry of ah(·, ·) and mh(·, ·), and the stability conditions stated before,
imply the continuity of ah and mh. In fact, for all vh, ϕh ∈ Wh,

|ah(vh, ϕh)| ≤ C‖vh‖H1(Ω)‖ϕh‖H1(Ω),

|mh(vh, ϕh)| ≤ C‖vh‖L2(Ω)‖ϕh‖L2(Ω).
(3.8)

The semidiscrete VEM formulation reads as follows. For all t > 0, find vh, wh ∈ L2(0, T; Wh) with
∂tvh, ∂twh ∈ L2(0, T; Wh), such that

⎧⎨
⎩

mh(∂tvh(t), ϕh) + D
(
J(vh(t))

)
ah(vh(t), ϕh) + bh(vh(t), wh(t), ϕh) =

(
Iapp,h(t), ϕh

)
0,Ω

mh(∂twh(t), φh) − ch(vh(t), wh(t), φh) = 0,
(3.9)

for all ϕh, φh ∈ Wh. Additionally, we set vh(0) = v0
h and wh(0) = w0

h. A classical backward Euler
integration method is employed for the time discretization of (3.9) with time step Δt = T/N. This
results in the following fully discrete method: find vn

h, wn
h ∈ Wh such that

⎧⎪⎪⎨
⎪⎪⎩

mh

(
vn

h−vn−1
h

Δt , ϕh

)
+ D

(
J(vn

h)
)

ah

(
vn

h, ϕh

)+ bh

(
vn

h, wn
h, ϕh

) =
(

In
app,h, ϕh

)
0,Ω

mh

(
wn

h−wn−1
h

Δt , φh

)
− ch

(
vn

h, wn
h, φh

) = 0,
(3.10)
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for all ϕh, φh ∈ Wh, for all n ∈ {1, . . . , N}; the initial condition takes the form v0
h, w0

h and In
app,h :=

Iapp,h(tn) with tn := nΔt, for n = 0, . . . , N. In order to simplify the notation, we denote

vh :=
N∑

n=1

vn
h(x)11((n−1)Δt,nΔt](t), wh :=

N∑
n=1

wn
h(x)11((n−1)Δt,nΔt](t). (3.11)

Remark 3.2 In (3.10) we have written a conforming H1-discretization to approximate the weak
solution of the system (2.6). In particular, we have considered the virtual space Wh for the approximation
of the gating variable w ∈ L2(ΩT). This choice will facilitate the presentation and the analysis of
the proposed virtual method. Other discrete spaces, such as piecewise polynomial of degree k, to
approximate the gating variable will be studied in a future work.

Our main result is the following theorem.

Theorem 3.3 Assume that (2.2) and (2.3) hold. If v0(x) ∈ L2(Ω), w0(x) ∈ L2(Ω) and Iapp(x, t) ∈
L2(ΩT) then the virtual element solution un

h = (
vn

h, wn
h

)
, generated by (3.10), converges along a

subsequence to u = (v, w) as h → 0, where u is a weak solution of (2.1). Moreover, the weak solution
is unique.

In the next section, we prove Theorem 3.3 by establishing the convergence of the virtual element
solution

(
vn

h, wn
h

)
, based on a priori estimates and the compactness method. Moreover, we provide error

estimates in Section 5.

4. Existence of solution for the virtual element scheme

The existence result for the virtual element scheme is given in the following proposition.

Proposition 4.1 Assume that (2.2) and (2.3) hold. Then the problem (3.10) admits a discrete solution
un

h = (
vn

h, wn
h

)
.

Proof. The existence of un
h is shown by induction on n = 0, . . . , N. For n = 0, the solution is given

by u0
h = (vh(0), wh(0)) = (v0

h, w0
h). Assume that un−1

h exists. Choose
[[· , ·]] as the scalar product on

H1(Ω) × L2(Ω). We define a map L : Wh × Wh → Wh × Wh such that for every un
h ∈ Wh × Wh,

L(un
h) ∈ Wh × Wh is the solution of following problem:

[[
L
(
un

h

)
, Φh

]] = mh

(
vn

h−vn−1
h

Δt
, ϕh

)
+ D

(
J(vn

h)
)

ah

(
vn

h, ϕh

)+ bh

(
vn

h, wn
h, ϕn

)−
(

Iapp,h(tn), ϕh

)
0,Ω

+ mh

(
wn

h−wn−1
h

Δt
, φh

)
− ch

(
vn

h, wn
h, φh

)
,

for all Φh := (ϕh, φh) ∈ Wh × Wh. Next we are looking for a solution un
h to

[[
L(un

h), Φh

]] = 0. Note that
the continuity of the operator L is a consequence of the continuity of mh, ah bh and ch. Moreover, the
following bound holds from the discrete Hölder and Sobolev inequalities (recall that H1(Ω) ⊂ Lq(Ω)

for all 1 ≤ q ≤ 6):

[[
L
(
un

h

)
, Φh

]] ≤ C
(∥∥vn

h

∥∥
H1(Ω)

+ ∥∥wn
h

∥∥
L2(Ω)

+ 1
) (∥∥ϕh

∥∥
H1(Ω)

+ ∥∥φh

∥∥
L2(Ω)

)
,
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for all un
h and Φh in Wh × Wh. Moreover, from (2.3) and Young inequality, we get[[

L(un
h), un

h

]] ≥ C
(∥∥vn

h

∥∥2
H1(Ω)

+ ∥∥wn
h

∥∥2
L2(Ω)

)
+ C ′

for some constants C > 0 and C′ (not necessarily positive). Finally, we conclude that
[[

L(un
h) , un

h

]] ≥ 0

for ‖un
h‖2 := ∥∥vn

h

∥∥2
H1(Ω)

+ ∥∥wn
h

∥∥2
L2(Ω)

sufficiently large. The existence of un
h follows by the standard

Brouwer fixed point argument (see Lions, 1969, Lemma 4.3). �

4.1 A priori estimates

In this section, we establish several a priori (discrete energy) estimates for the virtual element scheme,
which eventually will imply the desired convergence results.

Proposition 4.2 Let un
h = (

vn
h, wn

h

)
be a solution of the virtual element scheme (3.10). Then there exist

constants C > 0, depending on Ω , T , v0
h, w0

h, Iapp and αi, with i = 1, . . . 4, such that

‖vh‖L∞(0,T;L2(Ω)) + ‖wh‖L∞(0,T;L2(Ω)) ≤ C,

‖∇vh‖L2(ΩT ) ≤ C,

‖Π0
k vh‖L4(ΩT ) ≤ C,

where Π0
k has been introduced in (3.7).

Proof. We use (3.10) with ϕh = vn
h, φh = wn

h, and we sum over n = 1, . . . , κ for all 1 < κ ≤ N,
κ∑

n=1

mh

(
vn

h−vn−1
h , vn

h

)
+

κ∑
n=1

mh

(
wn

h−wn−1
h , wn

h

)
+
∫ κΔt

0
D
(
J(vn

h)
)

ah

(
vn

h, vn
h

)

+
∫ κΔt

0
bh

(
vn

h, wn
h, vn

h

) =
∫ κΔt

0
ch

(
vn

h, wn
h, wn

h

)+
∫ κΔt

0

(
Iapp,h

, vn
h

)
0,�

.

Observe that by an application of Hölder and Young inequalities, we get

κ∑
n=1

mh

(
vn

h−vn−1
h , vn

h

)
=

κ∑
n=1

mh

(
vn

h, vn
h

)
−

κ∑
n=1

mh

(
vn−1

h , vn
h

)

≥
κ∑

n=1

mh

(
vn

h, vn
h

)
−

κ∑
n=1

(
mh

(
vn

h, vn
h

))1/2 (
mh

(
vn−1

h , vn−1
h

))1/2

≥
κ∑

n=1

mh

(
vn

h, vn
h

)
−1

2

κ∑
n=1

mh

(
vn

h, vn
h

)
−

κ∑
n=1

1

2
mh

(
vn−1

h , vn−1
h

)

=
κ∑

n=1

(
1

2
mh

(
vn

h, vn
h

)
−1

2
mh

(
vn−1

h , vn−1
h

))

= 1

2
mh

(
vκ

h , vκ
h

)
−1

2
mh

(
v0

h, v0
h

)
.
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Using the last inequality, the definition of the forms bh, ch, the assumptions (2.2) and (3.5), we get

1

2
β ′(vκ

h , vκ
h

)
0,Ω + 1

2
β ′(wκ

h , wκ
h

)
0,Ω + d1α

′
∫ κΔt

0
a(vh, vh) +

κ∑
n=1

Δt

⎛
⎝∑

K∈Th

∫
K

I1,ion

(
Π0

K,kvn
h

)
Π0

K,kvn
h

⎞
⎠

≤ 1

2
β ′′(v0

h, v0
h

)
0,Ω + 1

2
β ′′(w0

h, w0
h

)
0,Ω +

κΔt∑
n=1

⎛
⎝∑

K∈Th

∫
K

H
(
Π0

K,kvn
h, Π0

K,kwn
h

)
Π0

K,kwn
h

⎞
⎠

−
κΔt∑
n=1

⎛
⎝∑

K∈Th

∫
K

I2,ion

(
Π0

K,kwn
h

)
Π0

K,kvn
h

⎞
⎠+

∫ κΔt

0

(
Iapp,h

, vh

)
0,Ω .

Now, using the definition of bilinear form a(·, ·) and (2.3)(a) on the left-hand side; moreover, we use
(2.3)(b), (2.3)(c), (2.3)(d) and Cauchy–Schwarz inequality, and the fact that Iapp(x, t) ∈ L2(ΩT); on the
right-hand side, we obtain

1

2
β ′‖vκ

h‖2
L2(Ω)

+ 1

2
β ′‖wκ

h‖2
L2(Ω)

+ d1α
′
∫ κΔt

0
|vh|21,Ω +

κΔt∑
n=1

⎛
⎝∑

K∈Th

∫
K

1

α1
|Π0

K,kvn
h|4
⎞
⎠

≤ 1

2
β ′′‖v0

h‖2
L2(Ω)

+ 1

2
β ′′‖w0

h‖2
L2(Ω)

+ α4

κΔt∑
n=1

⎛
⎝∑

K∈Th

∫
K

|Π0
K,kvn

h||Π0
K,kwn

h| + |Π0
K,kwn

h|2
⎞
⎠

+ α3

κΔt∑
n=1

⎛
⎝∑

K∈Th

∫
K

|Π0
K,kwn

h||Π0
K,kvn

h|
⎞
⎠+

∫ κΔt

0
‖vh‖2

L2(Ω)
+ C.

An application of the Cauchy–Schwarz and Young inequalities, the continuity of Π0
K,k with respect to

‖ · ‖0,K , yields

1

2
β ′‖vκ

h‖2
L2(Ω)

+ 1

2
β ′‖wκ

h‖2
L2(Ω)

+ d1α
′
∫ κΔt

0
|vh|2H1(Ω)

+
κΔt∑
n=1

⎛
⎝∑

K∈Th

∫
K

1

α1
|Π0

K,kvn
h|4
⎞
⎠

≤ 1

2
β ′′‖v0

h‖2
L2(Ω)

+ 1

2
β ′′‖w0

h‖2
L2(Ω)

+
∫ κΔt

0

(
1 + α2

3 + α2
4

2

)
‖vh‖2

L2(Ω)
+
∫ κΔt

0

(
α4 + α2

3 + α2
4

2

)
‖wh‖2

L2(Ω)
+ C

≤ 1

2
β ′′‖v0

h‖2
L2(Ω)

+ 1

2
β ′′‖w0

h‖2
L2(Ω)

+ C1‖vh‖2
L2(ΩT )

+ C2‖wh‖2
L2(ΩT )

+ C, (4.1)
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for some constants C1, C2 > 0. This implies

1

2
β ′ ∥∥vκ

h

∥∥2
L2(Ω)

+ 1

2
β ′ ∥∥wκ

h

∥∥2
L2(Ω)

≤ C3

∥∥vh

∥∥2
L2(ΩT )

+ C4

∥∥wh

∥∥2
L2(ΩT )

+ C5, (4.2)

for some C3, C4, C5 > 0. Therefore, by the discrete Gronwall inequality, yields from (4.2),

‖vh‖L∞(0,T;L2(Ω)) + ‖wh‖L∞(0,T;L2(Ω)) ≤ C6, (4.3)

for some constant C6 > 0. Finally, using (4.3) in (4.1) and (2.3), we get

‖Π0
k vh‖L4(ΩT ) + ‖∇vh‖L2(ΩT ) ≤ C7, (4.4)

for some constant C7 > 0. This concludes the proof of Lemma 4.2. �

4.2 Compactness argument and convergence

In this section, we will use time-continuous approximation of our discrete solution to obtain compact-
ness in L2(ΩT). For this, we introduce v̄h and w̄h the piecewise affine in t functions in W1,∞([0, T]; Wh)

interpolating the states (vn
h)n=0,...,N ⊂ Wh and (wn

h)n=0,...,N ⊂ Wh at the points (nΔt)n=0,...,N . Then we
have

⎧⎨
⎩mh(∂tv̄h(t), ϕh) + D

(
J(vh(t))

)
ah(vh(t), ϕh) + bh(vh(t), wh(t), ϕh) =

(
Iapp,h(t), ϕh

)
0,Ω

,

mh(∂tw̄h(t), φh) = ch(vh(t), wh(t), φh),
(4.5)

for all ϕh and φh ∈ Wh.

Lemma 4.3 There exists a positive constant C > 0 depending on Ω , T , v0 and Iapp such that

∫∫
Ωr×(0,T)

mh

(
vh(x + r, t) − vh(x, t), vh(x + r, t) − vh(x, t)

)
≤ C |r|2, (4.6)

for all r ∈ R
2 with Ωr := {x ∈ Ω | x + r ∈ Ω} and

∫∫
Ω×(0,T−τ)

mh

(
vh(x, t + τ) − vh(x, t), vh(x, t + τ) − vh(x, t)

)
dx dt ≤ C(τ + Δt), (4.7)

for all τ ∈ (0, T).

Proof. In the first step, we provide the proof of estimate (4.6). In this regard, we start with the
uniform estimate of space translate of vh from the uniform L2(ΩT) estimate of ∇vh. Observe that from
L2(0, T; H1(Ω)) estimate of vh, we get easily the bound

mr
h

(
vh(x + r, t) − vh(x, t), vh(x + r, t) − vh(x, t)

) ≤ C
∫ T

0

∫
Ωr

|vh(x + r, ·) − vh(x, ·)|2 ≤ C|r|2, (4.8)
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for some constant C > 0, where mr
h(·, ·) is the restriction of the bilinear form mh(·, ·) on Ωr. It is clear

that the right-hand side in (4.8) vanishes as |r| → 0, uniformly in h.
Now, we furnish the proof of estimate (4.7). Observe that for all t ∈ [0, T − τ ], the function ϕv

h
such that ϕv

h(x, t) = vh(x, t + τ) − vh(x, t) takes value in Wh for (x, t) ∈ ΩT . Therefore, we can use this
function as a test function in the weak formulations (3.10). Moreover, we previously proved uniform in
h bounds on vh and ∇vh in L2(ΩT) and on Π0

k vh in L4(ΩT). This implies the analogous bounds for the
translates ϕv

h and ∇ϕv
h in L2(Ω × (0, T − τ)) and Π0

k ϕv
h in L4(Ω × (0, T − τ)).

We integrate the first approximation equation of (4.5) with respect to the time parameter s ∈ [t, t+τ ]
(with 0 < τ < T). In the resulting equations, we take the test function as the corresponding translate
ϕv

h. The result is∫ T−τ

0

∫
Ω

mh

(
vh(x, t + τ) − vh(x, t), vh(x, t + τ) − vh(x, t)

)
dx dt

=
∫ T−τ

0

∫
Ω

∫ t+τ

t
mh

(
∂sv̄h(x, s), vh(x, t + τ) − vh(x, t)

)
ds dx dt

= −
∫ T−τ

0

∫
Ω

∫ t+τ

t
D
(
J(vh(x, s))

)
ah(vh(x, s), vh(x, t + τ) − vh(x, t)) ds dx dt

−
∫ T−τ

0

∫
Ω

∫ t+τ

t
bh(vh(x, s), wh(x, s), vh(x, t + τ) − vh(x, t)) ds dx dt

+
∫ T−τ

0

∫
Ω

∫ t+τ

t
(Iapp,h, vh(x, t + τ) − vh(x, t)) ds dx dt

= I1 + I2 + I3.

Now, we bound these integrals separately. For the term I1, we have

∣∣I1

∣∣ ≤ C

[∫ T−τ

0

∫
Ω

(∫ t+τ

t

∣∣∇vh(x, s)
∣∣ ds

)2

dx dt

] 1
2

×
[∫ T−τ

0

∫
Ω

∣∣∇(vh(x, t + τ) − vh(x, t)
∣∣ 2 dx dt

] 1
2

≤ C τ

for some constant C > 0. Herein, we used the Fubini theorem (recall that
∫ t+τ

t ds = τ = ∫ s
s−τ

dt), the
Hölder inequality and the bounds in L2 of ∇vh. Keeping in mind the growth bound of the nonlinearity
Iion, we apply the Hölder inequality (with p = 4, p′ = 4/3 in the ionic current term and with p = p′ = 2
in the other ones) to deduce

∣∣I2

∣∣ ≤ C

([∫ T−τ

0

∫
Ω

(∫ t+τ

t

∣∣∣Π0
k vh(x, s)

∣∣∣ 3 ds

) 4
3

dx dt

] 3
4

×
[∫ T−τ

0

∫
Ω

∣∣∣Π0
k ϕv

h(x, t)
∣∣∣ 4 dx dt

] 1
4

+
[∫ T−τ

0

∫
Ω

(∫ t+τ

t

∣∣wh(x, s)
∣∣ ds

)2

dx dt

] 1
2

×
[∫ T−τ

0

∫
Ω

∣∣ϕv
h(x, t)

∣∣ 2 dx dt

] 1
2
)

≤ C τ ,

for some constant C > 0, where we have used that vh, ϕv
h and wh are uniformly bounded in L2, and

Π0
k vh, Π0

k ϕv
h are bounded in L4 and the continuity of Π0

K,k with respect to ‖ · ‖L2(K).
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Analogously, we obtain ∣∣I3

∣∣ ≤ C τ ,

for some constant C > 0. Collecting the previous inequalities, we readily deduce

∫ T−τ

0

∫
Ω

mh

(
vh(x, t + τ) − vh(x, t), vh(x, t + τ) − vh(x, t)

)
≤ C τ .

Note that, it is easily seen from the definition of (v̄h, w̄h) and from the discrete weak formulation (3.10)
and estimates in Proposition 4.2 that

‖v̄h − vh‖2
L2(ΩT )

≤
N∑

n=1

Δt‖vn
h − vn−1

h ‖2
L2(Ω)

≤ C(Δt) → 0 as Δt → 0.

This concludes the proof of Lemma 4.3. �

4.3 Convergence of the virtual element scheme

For convergence of our numerical scheme we need the following estimate:

∥∥∥Π0
k u − u

∥∥∥
L2(Ω)

≤ Chk+1 ‖u‖Hk+1(Ω) for all u ∈ Hk+1(Ω), (4.9)

for some constant C > 0. This result follows from standard approximation results (see Brenner & Scott,
2008).

Note that from Lemma 4.3 and the stability condition (3.5), we get

∫∫
Ωr×(0,T)

∣∣vh(x + r, t) − vh(x, t)
∣∣ 2 dx dt ≤ C

β ′ |r|2

and ∫∫
Ω×(0,T−τ)

∣∣vh(x, t + τ) − vh(x, t)
∣∣ 2 dx dt ≤ C

β ′ (τ + Δt).

Therefore, the next lemma is a consequence of (4.9), Lemma 4.3 and Kolmogorov’s compactness
criterion (see, e.g., Brezis, 1983, Theorem IV.25).

Lemma 4.4 There exists a subsequence of uh = (vh, wh), not relabeled, such that, as h → 0,

vh, Π0
k vh → v strongly in L2(ΩT) and a.e. in ΩT ,

wh, Π0
k wh → w weakly in L2(ΩT) and a.e. in ΩT ,

vh ⇀ v weakly in L2(0, T; H1(Ω)),

Π0
k vh ⇀ v weakly in L4(ΩT).

(4.10)
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Now, we are going to show that the limit functions u := (v, w) constructed in Lemma 4.4 constitute
a weak solution of the nonlocal system defined in (2.6).

For that we let ϕ ∈ D(Ω × [0, T)). We approximate ϕ by ϕh ∈ C[0, T; L2(Ω)] such that ϕh|(tn−1,tn) ∈
Pk[tn−1, tn; Wh] and ϕh(T) = 0, where Pk[tn−1, tn; Wh] denotes the space of polynomials of degree k or
less having values in Wh.

Let uh := (vh, wh) be the unique solution of the fully discrete method (3.10). The proof is based on
the convergence to zero as h goes to zero of each term of the problems.

We start with the convergence of the nonlocal diffusion term. Observe that

∣∣∣D(J(vh))ah(vh, ϕh) − D(J(v))a(v, ϕ)

∣∣∣ ≤
∣∣∣D(J(v))[ah(vh, ϕh) − a(v, ϕ)]

∣∣∣
+
∣∣∣D(J(vh)) − D(J(v))

∣∣∣|ah(vh, ϕh)|
:= A1 + A2. (4.11)

For A2, we have

A2 =
∣∣∣D(J(vh)) − D(J(v))

∣∣∣|ah(vh, ϕh)| ≤ C|J(vh) − J(v)||ah(vh, ϕh)|
≤ C(‖vh − v‖L2(Ω) + ‖v − Π0

k v‖L2(Ω))|vh|H1(Ω)|ϕh|H1(Ω)

≤ C(‖vh − v‖L2(Ω) + h|v|H1(Ω))|v|H1(Ω)|ϕ|H1(Ω),

where we have used the assumption (2.2), the definition of J(vh) in (3.6), then we add and subtract an
appropriate polynomial function and finally the continuity of bilinear form ah(·, ·) in (3.8). Thus, using
(4.10), we have that (recall that ϕ ∈ D(Ω × [0, T)))

lim
h→0

∫ T

0
A2 dt = 0.

Now, we bound the term A1 in (4.11). Using the definition of bilinear form ah(·, ·), the assumption (2.2),
we have

A1 = |D(J(v))(ah(vh, ϕh) − a(v, ϕ))| ≤ |J(v)|
∑

K∈Th

∣∣∣aK
h (vh, ϕh) − aK(v, ϕ)

∣∣∣
≤
∣∣∣J(v)

∣∣∣[∑
K∈Th

|aK(ΠK,kvh, ΠK,kϕh) − aK(v, ϕ)| +
∑

K∈Th

|SK(vh − ΠK,kvh, ϕh − ΠK,kϕh)|
]

≤ C‖v‖L2(Ω)

[∑
K∈Th

|aK(ΠK,kvh − v, ΠK,kϕh)| +
∑

K∈Th

|aK(v, ΠK,kϕh − ϕ)|

+
∑

K∈Th

∣∣∣aK(vh − ΠK,kvh, ϕh − ΠK,kϕh)

∣∣∣ ],
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where we have added and subtracted aK(v, ΠK,kϕh) and used (3.2). Defining

Θ(h) :=
∑

K∈Th

|aK(ΠK,kvh − v, ΠK,kϕh)|.

Now, using this and the Cauchy–Schwarz inequality, we obtain

A1 ≤ C‖v‖L2(Ω)

[
Θ(h) +

∑
K∈Th

|v|H1(K)|ΠK,kϕh − ϕ|H1(K) +
∑

K∈Th

|vh −ΠK,kvh|H1(K)|ϕh −ΠK,kϕh|H1(K)

]
.

Next we add and subtract an appropriate polynomial ϕΠ in the second term, and we add and subtract ϕ

in the last term. Thus, we have

A1 ≤ C‖v‖L2(Ω)

[
Θ(h) +

∑
K∈Th

|v|H1(K)(|ΠK,k(ϕh − ϕΠ)|H1(K) + |ϕ − ϕΠ |H1(K))

+
∑

K∈Th

|vh − ΠK,kvh|H1(K)(|ϕh − ϕ|H1(K) + |ϕ − ΠK,kϕh|H1(K))

]

≤ C‖v‖L2(Ω)

[
Θ(h) +

∑
K∈Th

|v|H1(K)(|ϕh − ϕ|H1(K) + |ϕ − ϕΠ |H1(K))

+
∑

K∈Th

|vh|H1(K)(|ϕh − ϕ|H1(K) + |ϕ − ϕΠ |H1(K))

]
.

Now, using (4.10), standard approximation results for polynomials and the regularity of ϕ, we obtain

lim
h→0

∫ T

0
A1 dt = 0.

Finally, we get

∫ T

0

∣∣∣D(J(vh))ah(vh, ϕh) − D(J(v))a(v, ϕ)

∣∣∣ dt → 0 as h → 0.

Now, we prove

∣∣∣∣
∫ T

0
mh(vh, ∂tϕh) − (v, ∂tϕ)0,Ω

∣∣∣∣ → 0 as h → 0. (4.12)
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In fact, using the definition of the bilinear form mh(·, ·), we obtain

∣∣∣∣
∫ T

0
mh(vh, ∂tϕh) − (v, ∂tϕ)0,Ω

∣∣∣∣ ≤
∣∣∣∣∣∣
∑

K∈Th

(
Π0

Kvh, Π0
K∂tϕh

)
0,K

− (v, ∂tϕ)0,K

∣∣∣∣∣∣
+
∣∣∣SK

0

(
vh − Π0

Kvh, ∂tϕh − Π0
K∂tϕh

)∣∣∣

≤
∣∣∣∣∣∣
∑

K∈Th

(
Π0

Kvh − v, Π0
K∂tϕh

)
0,K

∣∣∣∣∣∣+
∣∣∣∣(v, Π0

K∂tϕh − ∂tϕ
)

0,K

∣∣∣∣
+
∣∣∣SK

0 (vh − Π0
Kvh, ∂tϕh − Π0

K∂tϕh)

∣∣∣
≤ ∥∥vh − v

∥∥
L2(Ω)

∥∥∂tϕ
∥∥

L2(Ω)
+ ‖v‖L2(Ω)

∥∥∂tϕh − ∂tϕ
∥∥

L2(Ω)

+ ∥∥vh

∥∥
L2(Ω)

(∥∥∂tϕh − ∂tϕΠ

∥∥
L2(Ω)

+ ∥∥∂tϕ − ∂tϕΠ

∥∥
L2(Ω)

)
.

Using this, (4.10), standard approximation results for polynomials and the regularity of ϕ, we arrive to
(4.12). Now, we prove

∫ T

0

∣∣bh(vh, wh, ϕh) − (Iion(v, w), ϕ)0,Ω

∣∣ dt → 0 as h → 0.

Using the definition of the form bh(·, ·, ·) and the decomposition of the ionic current Iion(v, w), we have

∣∣bh(vh, wh, ϕh) − (Iion(v, w), ϕ)0,Ω

∣∣ =
∣∣∣∣∣∣
∑

K∈Th

(Iion(Π
0
Kvh, Π0

Kwh), Π
0
Kϕh)0,K − (Iion(v, w), ϕ)0,K

∣∣∣∣∣∣

=
∣∣∣∣∣∣
∑

K∈Th

(I1,ion(Π
0
Kvh), Π

0
Kϕh)0,K + (I2,ion(Π

0
Kwh), Π

0
Kϕh)0,K − (I1,ion(v), ϕ)0,K − (I2,ion(w), ϕ)0,K

∣∣∣∣∣∣
≤

∑
K∈Th

|(I1,ion(Π
0
Kvh), Π

0
Kϕh)0,K − (I1,ion(v), ϕ)0,K | + |(I2,ion(Π

0
Kwh), Π

0
Kϕh)0,K − (I2,ion(w), ϕ)0,K |

=: B1 + B2.

Note that since the function I2,ion is a linear function, we get easily

∫ T

0
B2 dt → 0 as h goes to 0.
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Now, we turn to the term B1, we have the following estimation:

B1 ≤
∑

K∈Th

∣∣∣(I1,ion(Π
0
Kvh), Π

0
Kϕh

)
0,K − (

I1,ion(Π
0
Kvh), ϕ

)
0,K

∣∣∣
+
∑

K∈Th

∣∣∣(I1,ion(Π
0
Kvh), ϕ

)
0,K − (I1,ion(v), ϕ)0,K

∣∣∣
≤ ∥∥ϕh − ϕ

∥∥
L∞(Ω)

∥∥∥I1,ion(Π
0
Kvh)

∥∥∥
L1(Ω)

+ Const(v, Π0
Kvh, vh)

∥∥∥Π0
Kvh − v

∥∥∥
L2(Ω)

,

where Const(v, Π0
Kvh, vh) > 0 is a constant. This implies that

∫ T

0
B1 dt → 0 as h goes to 0.

Similarly, we get

∫ T

0

∣∣∣∣(Iapp,h, ϕh

)
0,Ω

− (Iapp(x, t), ϕ)0,Ω

∣∣∣∣ dt → 0 as h → 0.

With the above convergences and, by density, we are ready to identify the limit u = (v, w) as a (weak)
solution of the system (2.1). Finally, let ϕ ∈ L2(0, T; H1(Ω)) ∩ L4(ΩT) and φ ∈ C([0, T]; L2(Ω)), then
by passing to the limit h → 0 in the following weak formulation (with the help of Lemma 4.4)

−
∫ T

0
mh(vh(t), ∂tϕh) +

∫ T

0
D
(
J(vh(t))

)
ah(vh(t), ϕh) +

∫ T

0
bh(vh(t), wh(t), ϕh) =

∫ T

0
(Iapp,h(t), ϕh)0,Ω

∫ T

0
mh(∂twh(t), φh) =

∫ T

0
ch(vh(t), wh(t), φh),

we obtain the limit u = (v, w) that is a solution of system (2.1) in the sense of Definition 2.1.

5. Error estimates analysis

In this section, error estimates will be developed to our model (2.1). For technical reason (because of
the nonlinearity of Iion), we need to relax the assumptions (2.3). For the error estimates analysis, we will
use the following assumption on Iion: we assume that Iion is a linear function on v and w, satisfying

∀ s1, s2, z1, z2 ∈ R |Iion(s1, z1) − Iion(s2, z2)| ≤ α7(|s1 − s2| + |z1 − z2|), (5.1)

for some constant α7 > 0.
First, we introduce the projection Ph : H1(Ω) → Wh as the solution of the following well-posed

problem: {
Phu ∈ Wh,

ah(Phu, ϕh) = a(u, ϕh) for all ϕh ∈ Wh.
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We have the following lemma; the proof can be found in Beirão da Veiga et al. (2016, Lemma 3.1).

Lemma 5.1 Let u ∈ H1(Ω). Then there exist C, C̃ > 0, independent of h, such that∣∣∣Phu − u
∣∣∣ H1(Ω) ≤ Chk |u| Hk+1(Ω).

Moreover, if the domain is convex then

∥∥∥Phu − u
∥∥∥

L2(Ω)
≤ C̃hk+1 |u| Hk+1(Ω).

Our main result in this section is the following theorem.

Theorem 5.2 Let (v, w) be the solution of system (2.1) and let (vh(t), wh(t)) be the solution of the
problem (3.9). Then for all t ∈ (0, T), we have

∥∥vh(·, t) − v(·, t)
∥∥

L2(Ω)
+ ∥∥wh(·, t) − w(·, t)

∥∥
L2(Ω)

≤ C

[∥∥∥v0 − v0
h

∥∥∥
L2(Ω)

+
∥∥∥w0 − w0

h

∥∥∥
L2(Ω)

+ hk+1
(∣∣v0

∣∣
Hk+1(Ω) + ∣∣w0

∣∣
Hk+1(Ω)

+
∫ t

0

(∣∣∣Iapp

∣∣∣ Hk+1(Ω) + |v| Hk+1(Ω) + |w| Hk+1(Ω) + ∣∣∂tv
∣∣

Hk+1(Ω) + ∣∣∂tw
∣∣

Hk+1(Ω)

)
dt

)]

× exp

(∫ t

0

(
1 + |v| H2(Ω)

)
dt

)
, (5.2)

for some constant C > 0. Moreover, let un
h = (vn

h, wn
h) be the virtual element solution generated by

(3.10). Then for n = 1, . . . , N,

∥∥vn
h − v(·, tn)

∥∥
L2(Ω)

+ ∥∥wn
h − w(·, tn)

∥∥
L2(Ω)

≤ C

[∥∥∥v0 − v0
h

∥∥∥
L2(Ω)

+
∥∥∥w0 − w0

h

∥∥∥
L2(Ω)

+ Δt
∫ tn

0

(∣∣∣∂2
ttv
∣∣∣+ ∣∣∣∂2

ttw
∣∣∣ ) dt

+ hk+1
(∣∣v0

∣∣
Hk+1(Ω) + ∣∣w0

∣∣
Hk+1(Ω)

+
∫ tn

0

(∣∣∣Iapp

∣∣∣ Hk+1(Ω) + |v| Hk+1(Ω) + |w| Hk+1(Ω) + ∣∣∂tv
∣∣

Hk+1(Ω) + ∣∣∂tw
∣∣

Hk+1(Ω)

)
dt

)]

× exp

(∫ tn

0

(
1 + |v| H2(Ω)

)
dt

)
. (5.3)

Proof. We start with the proof of bound (5.2). First, note that

Uh(·, t) − U(·, t) = (Uh(·, t) − PhU(·, t)) + (PhU(·, t) − U(·, t)) for U = v, w.
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Observe that from Lemma 5.1, we get easily for U = v, w,

‖PhU(·, t) − U(·, t)‖L2(Ω) ≤ Chk+1 |U| Hk+1(Ω)

≤ Chk+1
(∣∣U0

∣∣
Hk+1(Ω) +

∫ t

0

∣∣∂tU(·, s)
∣∣

Hk+1(Ω) ds

)

= Chk+1
(∣∣U0

∣∣
Hk+1(Ω) + ∥∥∂tU

∥∥
L1(0,t;Hk+1(Ω))

)
, (5.4)

for all t ∈ (0, T).
Observe that, using the continuous and semidiscrete problems (cf. (2.1) and (3.9)), the definition of

the projector Ph and the fact that the derivative with respect to time commutes with this projector, we
obtain

mh(∂t(vh − Phv), ϕv
h) + D

(
J(vh)

)
ah

(
(vh − Phv), ϕv

h

)

=
(

Iapph
, ϕv

h

)
0,Ω

− bh

(
vh, wh, ϕv

h

)− mh

(
∂tPhv, ϕv

h

)
− D(J(vh))ah

(
Phv, ϕv

h

)

=
(

Iapph
, ϕv

h

)
0,Ω

− bh

(
vh, wh, ϕv

h

)− mh

(
Ph∂tv, ϕv

h

)
− D(J(vh))a

(
v, ϕv

h

)

=
[(

Iapph
, ϕv

h

)
0,Ω

−
(

Iapp, ϕv
h

)
0,Ω

]
−
[
bh

(
vh, wh, ϕv

h

)− (
Iion(v, w), ϕv

h

)
0,Ω

]

+
[(

∂tv, ϕv
h

)
0,Ω − mh

(
Ph∂tv, ϕv

h

)]
+ [(

D (J(v)) − D
(
J(vh)

))
a
(
v, ϕv

h

)]
:= I1 + I2 + I3 + I4, (5.5)

for all ϕv
h ∈ Wh. Now, we are going to bound each term I1, . . . , I4. Regarding the first term I1, we have

I1 = (Π0
k Iapp − Iapp, ϕv

h)0,Ω ≤ Chk+1|Iapp|Hk+1(Ω)

∥∥ϕv
h

∥∥
L2(Ω)

, (5.6)

for some constant C > 0, where we have used the definition of Iapph
. Next for I2, using the definition of

the form bh(·, ·, ·), and adding and subtracting adequate terms, we have

I2 = −
[
bh(vh, wh, ϕv

h) − (
PhIion(v, w), ϕv

h

)
0,Ω

]
−
[(
PhIion(v, w), ϕv

h

)
0,Ω − (

Iion(v, w), ϕv
h

)
0,Ω

]

= −
[∑

K∈Th

(
Iion

(
Π0

K,kvh, Π0
K,kwh

)
, Π0

K,kϕ
v
h

)
0,K − (

Iion(Phv,Phw), ϕv
h

)
0,K

]

−
[(
PhIion(v, w) − Iion(v, w), ϕv

h

)
0,Ω

]

= −
[∑

K∈Th

(
Iion

(
Π0

K,kvh, Π0
K,kwh

)− Iion(Phv,Phw), ϕv
h

)
0,K

]
−
[(
PhIion(v, w) − Iion(v, w), ϕv

h

)
0,Ω

]
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≤ C
[∑

K∈Th

(
‖Π0

K,kvh − Phv‖L2(K) + ‖Π0
K,kwh − Phw‖L2(K)

) ∥∥ϕv
h

∥∥
L2(K)

]

+ Chk+1(|v| Hk+1(Ω) + |w| Hk+1(Ω))
∥∥ϕv

h

∥∥
L2(Ω)

≤ C
(
‖Π0

k vh − Phv‖L2(Ω) + ‖Π0
k wh − Phw‖L2(Ω)

)
‖ϕv

h‖L2(Ω)

+ Chk+1 (|v| Hk+1(Ω) + |w| Hk+1(Ω)

) ∥∥ϕv
h

∥∥
L2(Ω)

,

for some constant C > 0, where we have used that Iion is a linear function, (5.1), the properties of
projectors Π0

k and Ph, and finally Lemma 5.1.
For I3, we use the consistency and stability properties of the bilinear for mh(·, ·) to get

I3 =
∑

K∈Th

[(
∂tv − Π0

K,k∂tv, ϕv
h

)
0,K

+ mK
h

(
Π0

K,k∂tv − Ph∂tv, ϕv
h

)]

≤C
∑

K∈Th

[
‖∂tv − Π0

K,k∂tv‖L2(K) + ‖Π0
K,k∂tv − Ph∂tv‖L2(K)

] ∥∥ϕv
h

∥∥
L2(K)

≤Chk+1
∣∣∂tv

∣∣
Hk+1(Ω)

∥∥ϕv
h

∥∥
L2(Ω)

,

for some constant C > 0. Moreover, by using the assumption on D, an integration by parts, the Cauchy–
Schwarz inequality, the continuity of projector Π0

k and adding and subtracting Phv, we get

I4 ≤ C
(
‖vh − Phv‖L2(Ω) + ‖v − Phv‖L2(Ω) + ‖v − Π0

k v‖L2(Ω)

)
‖Δv‖L2(Ω)

∥∥ϕv
h

∥∥
L2(Ω)

,

for some constant C > 0.
On the other hand, similarly for wh, we obtain

mh(∂t(wh − Phw), ϕw
h ) =

(
ch

(
vh, wh, ϕw

h

)− mh

(
∂tPhw, ϕw

h

))
= ch

(
vh, wh, ϕw

h

)− mh

(
Ph∂tw, ϕv

h

)
− (

H(v, w), ϕw
h

)
0,Ω + (

∂tw, ϕw
h

)
0,Ω

≤
[
ch

(
vh, wh, ϕw

h

)−
(
PhH(v, w), ϕw

h

)
0,Ω

]

+
[(
PhH(v, w), ϕw

h

)
0,Ω

− (
H(v, w), ϕw

h

)
0,Ω

]
+
[(

∂tw, ϕw
h

)− mh

(
∂tPhw, ϕw

h

)]
,

for all ϕw
h ∈ Wh. Now, using (2.3)(d), repeating the arguments used to bound I2, and I3 and using once

again the properties of projectors Π0
k , and Ph and finally Lemma 5.1, we readily obtain

mh(∂t(wh − Phw), ϕw
h ) ≤ C

(
‖Π0

k vh − Phv‖L2(Ω) + ‖Π0
k wh − Phw‖L2(Ω)

) ∥∥ϕw
h

∥∥
L2(Ω)

+ Chk+1(|v| Hk+1(Ω) + |w| Hk+1(Ω) + ∣∣∂tw
∣∣

Hk+1(Ω))
∥∥ϕw

h

∥∥
L2(Ω)

, (5.7)

for some constant C > 0.
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Collecting the previous results (5.5)–(5.7) and using the approximation properties of projectors Π0
k

and Ph, we get

mh

(
∂t(vh − Phv), ϕv

h

)
+ mh

(
∂t(wh − Phw), ϕw

h

)
≤ C

[
hk+1

(
|Iapp|Hk+1(Ω) + |v| Hk+1(Ω) + |w| Hk+1(Ω) + ∣∣∂tv

∣∣
Hk+1(Ω) + ∣∣∂tw

∣∣
Hk+1(Ω)

)
+ C

(
1 + ‖Δv‖L2(Ω)

) (‖vh − Phv‖L2(Ω) + ‖wh − Phw‖L2(Ω)

)](‖ϕv
h‖L2(Ω) + ‖ϕw

h ‖L2(Ω)

)
.

(5.8)

Now, we set ϕv
h := (vh − Phv) ∈ Wh and ϕw

h := (wh − Phw) ∈ Wh in (5.8), we deduce

1

2

d

dt

(
mh(vh − Phv, vh − Phv) + mh(wh − Phw, wh − Phw)

)
≤ C

[
hk+1

(
|Iapp|Hk+1(Ω) + |v| Hk+1(Ω) + |w| Hk+1(Ω) + |∂tv|Hk+1(Ω) + |∂tw|Hk+1(Ω)

)
+ C

(
1 + ‖Δv‖L2(Ω)

) (‖vh − Phv‖L2(Ω) + ‖wh − Phw‖L2(Ω)

)]
×
(
‖(vh − Phv)‖L2(Ω) + ‖(wh − Phw)‖L2(Ω)

)
.

Herein, we used the equivalence of the norm ‖ · ‖h := mh(·, ·) with the L2 norm, integrating the previous
bound on (0, t) and an application of Gronwall inequality, we get

∥∥∥vh − Phv
∥∥∥

L2(Ω)
+
∥∥∥wh − Phw

∥∥∥
L2(Ω)

≤ C(T)
[∥∥∥v0 − v0

h

∥∥∥
L2(Ω)

+
∥∥∥w0 − w0

h

∥∥∥
L2(Ω)

+ hk+1
(∣∣v0

∣∣
Hk+1(Ω) + ∣∣w0

∣∣
Hk+1(Ω)

+
∫ t

0

(∣∣∣Iapp

∣∣∣ Hk+1(Ω) + |v| Hk+1(Ω) + |w| Hk+1(Ω) + ∣∣∂tv
∣∣

Hk+1(Ω) + ∣∣∂tw
∣∣

Hk+1(Ω)

)
dt
)]

× exp

(∫ t

0

(
1 + |v| H2(Ω)

)
dt

)
.

Using this and (5.4), we get (5.2).
Proof of (5.3) Similarly to (5.2), observe that for n = 1, . . . , N,

Un
h − U(·, tn) =

(
Un

h − PhU(·, tn)
)

+
(
PhU(·, tn) − U(·, tn)

)
for U = v, w

and from Lemma 5.1, we get easily for U = v, w and for all t ∈ (0, T),

‖PhU(·, tn) − U(·, tn)‖L2(Ω) ≤ Chk+1
(
|U0|Hk+1(Ω) + ‖∂tU‖L1(0,t;Hk+1(Ω))

)
,
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for some constant C > 0. Next we bound the term (Un
h − PhU(·, tn)) for U = v, w. Note that using

the continuous and fully discrete problems (cf. (2.1) and (3.10)), the definition of the projector Ph, we
obtain

mh

⎛
⎝
(
vn

h − Phv(·, tn)
)−

(
vn−1

h − Phv(·, tn−1)
)

Δt
, ϕv

h

⎞
⎠+ D

(
J
(
vn

h

))
ah

((
vn

h − Phv(·, tn)
)

, ϕv
h

)

=
(

In
app,h, ϕv

h

)
0,Ω

− bh

(
vn

h, wn
h, ϕv

h

)−mh

(
Phv(·, tn)−Phv(·, tn−1)

Δt
, ϕv

h

)
−D

(
J
(
vn

h

))
ah

(
Phv(·, tn), ϕ

v
h

)

=
(

In
app,h, ϕv

h

)
0,Ω

− bh

(
vn

h, wn
h, ϕv

h

)−(Iapp(·, tn), ϕ
v
h

)
0,Ω

+(Iion(v(·, tn), w(·, tn)), ϕ
v
h

)
0,Ω +(∂tv(·, tn), ϕ

v
h

)

− mh

(Phv(·, tn) − Phv(·, tn−1)

Δt
, ϕv

h

)
+ (

D
(
J(v(·, tn))

)− D
(
J
(
vn

h

)))
a
(
v(·, tn), ϕ

v
h

)

=
[(

In
app,h, ϕv

h

)
0,Ω

−
(

Iapp(·, tn), ϕ
v
h

)
0,Ω

]
−
[
bh

(
vn

h, wn
h, ϕv

h

)− (
Iion(v(·, tn), w(·, tn)), ϕ

v
h

)
0,Ω

]

+
[(

∂tv(·, tn), ϕ
v
h

)− mh

(
Phv(·, tn) − Phv(·, tn−1)

Δt
, ϕv

h

)]

+
[(

D
(
J(v(·, tn))

)− D
(
J
(
vn

h

)))
a
(
v(·, tn), ϕ

v
h

) ]

:= I1 + I2 + I3 + I4. (5.9)

Now, we will bound the terms I1, . . . , I4. Note that the first term I1 can be estimated like (5.6)

I1 ≤ Chk+1|Iapp(·, tn)|Hk+1(Ω)

∥∥ϕv
h

∥∥
L2(Ω)

,

for some constant C > 0. Next for I2, using the definition of the form bh(·, ·, ·), adding and subtracting
adequate terms, we have

I2 = −
[
bh

(
vn

hwn
h, ϕv

h

)−
(
PhIion(v(·, tn), w(·, tn)), ϕ

v
h

)
0,Ω

]

−
[(

PhIion(v(·, tn), w(·, tn)), ϕ
v
h

)
0,Ω

− (
Iion(v(·, tn), w(·, tn)), ϕ

v
h

)
0,Ω

]

= −
[∑

K∈Th

(
Iion

(
Π0

K,kvn
h, Π0

K,kwn
h

)
, Π0

K,kϕ
v
h

)
0,K

−
(

Iion(Phv(·, tn),Phw(·, tn)), ϕ
v
h

)
0,K

]

−
[(

PhIion(v(·, tn), w(·, tn)) − Iion(v(·, tn), w(·, tn)), ϕ
v
h

)
0,Ω

]
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= −
[∑

K∈Th

(
Iion

(
Π0

K,kvn
h, Π0

K,kwn
h

)
− Iion(Phv(·, tn),Phw(·, tn)), ϕ

v
h

)
0,K

]

−
[(

PhIion(v(·, tn), w(·, tn)) − Iion(v(·, tn), w(·, tn)), ϕ
v
h

)
0,Ω

]

≤C

⎡
⎣∑

K∈Th

(∥∥∥Π0
K,kvn

h − Phv(·, tn)
∥∥∥

L2(K)
+
∥∥∥Π0

K,kwn
h − Phw(·, tn)

∥∥∥
L2(K)

)∥∥ϕv
h

∥∥
L2(K)

⎤
⎦

+ Chk+1(
∣∣v(·, tn)

∣∣
Hk+1(Ω) + ∣∣w(·, tn)

∣∣
Hk+1(Ω))

∥∥ϕv
h

∥∥
L2(Ω)

≤C
(∥∥∥Π0

k vn
h − Phv(·, tn)

∥∥∥
L2(Ω)

+
∥∥∥Π0

k wn
h − Phw(·, tn)

∥∥∥
L2(Ω)

)∥∥ϕv
h

∥∥
L2(Ω)

+ Chk+1(
∣∣v(·, tn)

∣∣
Hk+1(Ω) + ∣∣w(·, tn)

∣∣
Hk+1(Ω))

∥∥ϕv
h

∥∥
L2(Ω)

,

for some constant C > 0, where we have used that Iion is a linear function, (5.1), the properties of
projectors Π0

k and Ph, and finally Lemma 5.1.
Regarding I3, we use the consistency and stability properties of the bilinear form mh to get

I3 =
∑

K∈Th

[
(∂tv(·, tn), ϕ

v
h)0,K − mK

h

(
Phv(·, tn) − Phv(·, tn−1)

Δt
, ϕv

h

)]

=
∑

K∈Th

[(
∂tv(·, tn) − v(·, tn) − v(·, tn−1)

Δt
, ϕv

h

)
0,K

+
(

v(·, tn) − v(·, tn−1)

Δt
− Π0

K,k(v(·, tn) − v(·, tn−1))

Δt
, ϕv

h

)
0,K

+ mK
h

(
Π0

K,k(v(·, tn) − v(·, tn−1))

Δt
− Ph(v(·, tn) − v(·, tn−1))

Δt
, ϕv

h

)]

≤ C

Δt

∑
K∈Th

[∥∥Δt∂tv(·, tn) − (v(·, tn) − v(·, tn−1))
∥∥

L2(K)

+
∥∥∥(v(·, tn) − v(·, tn−1)) − Π0

K,k(v(·, tn) − v(·, tn−1))

∥∥∥
L2(K)

+
∥∥∥Π0

K,k(v(·, tn) − v(·, tn−1)) − Ph(v(·, tn) − v(·, tn−1))

∥∥∥
L2(K)

]∥∥ϕv
h

∥∥
L2(K)

≤ C

Δt

[∥∥Δt∂tv(·, tn) − (v(·, tn) − v(·, tn−1))
∥∥

L2(Ω)
+ hk+1

∣∣v(·, tn) − v(·, tn−1)
∣∣

Hk+1(Ω)

]∥∥ϕv
h

∥∥
L2(Ω)

≤ C

Δt

[
Δt

∫ tn

tn−1

∥∥∥∂2
ttv(·, s)

∥∥∥
L2(Ω)

ds + hk+1
∫ tn

tn−1

∣∣vt(·, s)
∣∣

Hk+1(Ω) ds
]∥∥ϕv

h

∥∥
L2(Ω)

,

for some constant C > 0, where we have used Cauchy–Schwarz inequality and the approximation
properties of Π0

k and Ph, and finally Lemma 5.1. Moreover, for I4 by using an integration by parts,
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the assumption on D, Cauchy–Schwarz inequality, the continuity of projector Π0
k , and adding and

subtracting Phv, we obtain

I4 ≤C

(∥∥∥Phv(·, tn) − vn
h

∥∥∥
L2(Ω)

+
∥∥∥v(·, tn) − Phv(·, tn)

∥∥∥
L2(Ω)

+
∥∥∥v(·, tn) − Π0

k v(·, tn)
∥∥∥

L2(Ω)

)∥∥Δv(·, tn)
∥∥

L2(Ω)

∥∥ϕv
h

∥∥
L2(Ω)

,

for some constant C > 0. On the other hand, similarly for wh, we obtain

mh

(
(wn

h(·) − Phw(·, tn)) − (wn−1
h (·) − Phw(·, tn−1))

Δt
, ϕw

h

)
= ch(v

n
h, wn

h, ϕw
h )

− mh

(
Phw(·, tn) − Phw(·, tn−1)

Δt
, ϕw

h

)

= ch(v
n
h, wn

h, ϕw
h ) − mh

(
Phw(·, tn) − Phw(·, tn−1)

Δt
, ϕw

h

)

− (H(v(·, tn), w(·, tn)), ϕ
w
h )0,Ω + (∂tw(·, tn), ϕ

w
h )0,Ω

≤
[
ch(v

n
h, wn

h, ϕw
h ) − (PhH(v(·, tn), w(·, tn)), ϕ

w
h )0,Ω

]

+
[(

PhH(v(·, tn), w(·, tn)), ϕ
w
h

)
0,Ω

− (
H(v(·, tn), w(·, tn)), ϕ

w
h

)
0,Ω

]

+
[(

∂tw(·, tn), ϕ
w
h

)
0,Ω − mh

(
Phw(·, tn) − Phw(·, tn−1)

Δt
, ϕw

h

)]
.

Now, using (2.3)(d), repeating the arguments used to bound I2 and I3, and using once again the
approximation properties of projectors Π0

k and Ph, and finally Lemma 5.1, we readily obtain

mh

(
(wn

h(·) − Phw(·, tn)) − (wn−1
h (·) − Phw(·, tn−1))

Δt
, ϕw

h

)
≤ C

(
‖vn

h − Phv(·, tn)‖L2(Ω)

+ ‖wn
h − Phw(·, tn)‖L2(Ω) + Chk+1(|v(·, tn)|Hk+1(Ω) + |w(·, tn)|Hk+1(Ω)

))‖ϕw
h ‖L2(Ω)

+ C

Δt

[
Δt

∫ tn

tn−1

∥∥∥∂2
ttw(·, s)

∥∥∥
L2(Ω)

ds + hk+1
∫ tn

tn−1

∣∣wt(·, s)
∣∣

Hk+1(Ω) ds
]∥∥ϕv

h

∥∥
L2(Ω)

, (5.10)

for some constant C > 0.
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Collecting the previous results (5.9) and (5.10) and using the approximation properties of projectors
Π0

k and Ph, after substituting ϕv
h = vn

h − Phv and ϕw
h = wn

h − Phw in (5.9) and (5.10), respectively, we
deduce

mh

(
vn

h − Phv(·, tn), vn
h − Phv(·, tn)

)
+ mh

(
wn

h − Phw(·, tn), wn
h − Phw(·, tn)

)

≤
(

mh

(
vn−1

h − Phv(·, tn−1), vn
h − Phv(·, tn)

)
+ mh

(
wn−1

h − Phw(·, tn−1), wn
h − Phw(·, tn)

) )

+ C

[
Δt

(
(1 + ∣∣v(·, tn)

∣∣
H2(Ω))

(∥∥∥vn
h − Phv(·, tn)

∥∥∥
L2(Ω)

+
∥∥∥wn

h − Phw(·, tn)
∥∥∥

L2(Ω)

)

+ hk+1
(∣∣v(·, tn)

∣∣
Hk+1(Ω) + ∣∣w(·, tn)

∣∣
Hk+1(Ω) +

∣∣∣Iapp(·, tn)
∣∣∣ Hk+1(Ω)

)

+
∫ tn

tn−1

(∥∥∥∂2
ttv(·, s)

∥∥∥
L2(Ω)

+
∥∥∥∂2

ttw(·, s)
∥∥∥

L2(Ω)

)
ds

)

+ hk+1
∫ tn

tn−1

(∣∣vt(·, s)
∣∣

Hk+1(Ω) + ∣∣wt(·, s)
∣∣

Hk+1(Ω)

)
ds

]

×
(∥∥∥vn

h − Phv(·, tn))
∥∥∥

h
+
∥∥∥wn

h − Phw(·, tn)
∥∥∥

h

)
.

This implies

∥∥∥vn
h − Phv(·, tn)

∥∥∥
h
+
∥∥∥wn

h − Phw(·, tn)
∥∥∥

h

≤
(∥∥∥vn−1

h − Phv(·, tn−1)

∥∥∥
h
+
∥∥∥wn−1

h − Phw(·, tn−1)

∥∥∥
h

)

+ C

[
Δt

(
(1 + ∣∣v(·, tn)

∣∣
H2(Ω))

(∥∥∥vn
h − Phv(·, tn)

∥∥∥
L2(Ω)

+
∥∥∥wn

h − Phw(·, tn)
∥∥∥

L2(Ω)

)

+ hk+1
(∣∣v(·, tn)

∣∣
Hk+1(Ω) + ∣∣w(·, tn)

∣∣
Hk+1(Ω) +

∣∣∣Iapp(·, tn)
∣∣∣ Hk+1(Ω)

)

+
∫ tn

tn−1

(∥∥∥∂2
ttv(·, s)

∥∥∥
L2(Ω)

+
∥∥∥∂2

ttw(·, s)
∥∥∥

L2(Ω)

)
ds

)

+ hk+1
∫ tn

tn−1

(∣∣vt(·, s)
∣∣

Hk+1(Ω) + ∣∣wt(·, s)
∣∣

Hk+1(Ω)

)
ds

]
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≤
(∥∥∥v0

h − Phv(·, 0)

∥∥∥
h
+
∥∥∥w0

h − Phw(·, 0)

∥∥∥
h

)

+ C
n∑

�=1

[
Δt
(
(1 + ∣∣v(·, t�)

∣∣
H2(Ω))

(∥∥∥v�
h − Phv(·, t�)

∥∥∥
h
+
∥∥∥w�

h − Phw(·, t�)
∥∥∥

h

)

+
∫ t�

t�−1

(∥∥∥∂2
ttv(·, s)

∥∥∥
L2(Ω)

+
∥∥∥∂2

ttw(·, s)
∥∥∥

L2(Ω)

)
ds
)
+ ∥∥v0 − v0,h

∥∥
L2(Ω)

+ ∥∥w0 − w0,h

∥∥
L2(Ω)

+ hk+1
(∣∣v0

∣∣
Hk+1(Ω) + |w0|Hk+1(Ω) + ∣∣v(·, t�)

∣∣
Hk+1(Ω) + |w(·, t�)|Hk+1(Ω) + |Iapp(·, t�)|Hk+1(Ω)

+
∫ t�

t�−1

(
|v(·, s)| Hk+1(Ω) + |w(·, s)| Hk+1(Ω)

)
ds
)]

. (5.11)

Finally, we use the equivalence of the norm ‖ · ‖h := mh(·, ·) with the L2 norm and an application of
discrete Gronwall inequality to (5.11) to get (5.3). This concludes the proof of Theorem 5.2. �

6. Numerical results

In the present section, we report some numerical examples of the proposed VEM. With this aim, we
have implemented in a MATLAB code the lowest-order VEM (k = 1) on arbitrary polygonal meshes
following the ideas proposed in Beirão da Veiga et al. (2014a). Moreover, we solve the nonlinear
problem derived from (3.10) by a classical Picard-type iteration.

To complete the choice of the VEM, we have to choose the bilinear forms SK(·, ·) and SK
0 (·, ·),

satisfying (3.2) and (3.3), respectively. In this respect, we have proceeded as in Beirão da Veiga et al.
(2013a, Section 4.6); for each polygon K with vertices P1, . . . , PNK

, we have used

SK(u, v) :=
NK∑
r=1

u(Pr)v(Pr), u, v ∈ W1|K ,

SK
0 (u, v) := h2

K

NK∑
r=1

u(Pr)v(Pr), u, v ∈ W1|K .

A proof of (3.2) and (3.3) for the above (standard) choices could be derived following the arguments
in Ahmad et al. (2013) and Beirão da Veiga et al. (2013a, 2017a). The choices above are standard in
the Virtual Element Literature and correspond to a scaled identity matrix in the space of the degrees of
freedom values.

In all the numerical examples we have considered H(v, w) and Iion(v, w) as in (2.4) and (2.5),
respectively. Moreover, we have tested the method by using different families of meshes (see Fig. 1).

6.1 Test 1

The aim of this numerical example is to test the convergence properties of the proposed VEM. With this
objective, we introduce the following discrete relative L2 norm of the difference between a reference
solution uref , which is obtained on an extremely fine mesh and the numerical solution uh at the final
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Fig. 1. Sample meshes: T 1
h (left), T 2

h (center) and T 3
h (right).

Table 1 Test 1: Eh,Δt error for v and for the meshes T 2
h

h\Δt Δt = 1/3 Δt = 1/12 Δt = 1/48 Δt = 1/192

1/8 0.523499772859947 0.254128190031018 0.231625702484074 0.228564582239788
1/16 0.501427757954840 0.073397686413675 0.033438153244729 0.031719551242699
1/32 0.499619638795241 0.063643322905268 0.010299560779982 0.005840961963621
1/64 0.499780908876156 0.064056553619930 0.009767337053892 0.002546001572083

Table 2 Test 1: Eh,Δt error for w and for the meshes T 2
h

h\Δt Δt = 1/3 Δt = 1/12 Δt = 1/48 Δt = 1/192

1/8 0.233922447286499 0.102194576523503 0.086875203270260 0.084789535586885
1/16 0.226571951589132 0.089790111454289 0.075921461474953 0.074408607847462
1/32 0.210582296617939 0.049672099006078 0.023584319200822 0.020543068189885
1/64 0.207657184653963 0.043302505350623 0.011225579353452 0.005588513008340

time T , that is,

E2
h,Δt := mh(uref (·, T) − uh(·, T), uref (·, T) − uh(·, T))

mh(uref (·, T), uref (·, T))
.

For this example, the domain will be Ω = (0, 1)2 and the time interval will be [0, 1]; we will take the
model constants as follows: a = 0.2232, b = 0.9, λ = −1, θ = 0.004. We also take Iapp = 0 and
D(x) = 0.01x. Moreover, we consider the following initial data:

v0(x, y) = (1 + 0.5 cos(4πx) cos(4πy)), w0(x, y) = (1 + 0.5 cos(8πx) cos(8πy)).

Due to the lack of exact solution for this example, we compute errors using a numerical solution on
an extremely fine mesh (h = 1/512) and time step (Δt = 1/512) as reference vref , wref .

We report in Tables 1 and 2 the relative errors Eh,Δt for variables v and w, respectively, for the family
of meshes T 2

h and different refinement levels and time steps.
It can be seen along the diagonals of Tables 1 and 2 that the error in the discrete L2 norm reduced

with a quadratic order with respect to h, which is the expected order of convergence for k = 1.
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Fig. 2. Test 1: variables v (left) and w (right) for h = 1/64 and Δt = 1/80.

Fig. 3. Test 2: numerical solution of the transmembrane potential v for different times and D(x) = 0.01x.

We show in Fig. 2 the profiles of the computed quantities.

6.2 Test 2

We consider a benchmark example (cf. Bendahmane et al., 2010). We solve the equation using meshes
T 1

h (with h = 1/128) on the unit square, time interval [0, 4] (with Δt = 1/100) and with the following
model constants: a = 0.16875, b = 1, λ = −100, θ = 0.25. Moreover, we consider the following initial
data:

v0(x, y) =
(

1 − 1

1 + e−50(x2+y2)1/2−0.1

)
, w0(x, y) = 0.
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After 4ms, an instantaneous stimulus is applied in (x0, y0) = (0.5, 0.5) to the transmembrane
potential v,

Iapp =
{

1 mV if (x − x0)
2 + (y − y0)

2 < 0.04 cm2,
0 mV otherwise.

We show in Fig. 3 the evolution of the numerical solution vh (transmembrane potential) for different
times and considering nonlocal diffusion, D(x) = 0.01x.

6.3 Test 3

The existence of spiral waves is an interesting phenomena in this type of model (see Liu et al., 2015;
Coudiére & Turpault, 2017). The aim of this test is to obtain the well-known periodic spiral wave. For
this example, we use meshes T 3

h (with h = 1/128) on the domain Ω := (0, 1)2 and time interval [0, 15]
(with Δt = 1/200). We will take the model constants as follows: a = 0.16875, b = 1, λ = −100,
θ = 0.25. Moreover, we consider the following initial data:

v0(x, y) =
⎧⎨
⎩

1.4 if x < 0.5 and y < 0.5

0 otherwise,

w0(x, y) =
⎧⎨
⎩

0.15 if x > 0.5 and y < 0.5

0 otherwise.

As it is expected the initial data evolve to a spiral wave; see Fig. 4.

Fig. 4. Test 3: numerical solution of the transmembrane potential v for different times.
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