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Université de Bordeaux, 33076 Bordeaux Cedex, France

David Mora

GIMNAP, Departamento de Matemática
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Abstract. We are interested in modelling the interaction of bacteria and cer-
tain nutrient concentration within a porous medium admitting viscous flow.

The governing equations in primal-mixed form consist of an advection-reaction-

diffusion system representing the bacteria-chemical mass exchange, coupled to
the Brinkman problem written in terms of fluid vorticity, velocity and pressure,

and describing the flow patterns driven by an external source depending on the

local distribution of the chemical species. A priori stability bounds are derived
for the uncoupled problems, and the solvability of the full system is analysed
using a fixed-point approach. We introduce a primal-mixed finite element
method to numerically solve the model equations, employing a primal scheme
with piecewise linear approximation of the reaction-diffusion unknowns, while

the discrete flow problem uses a mixed approach based on Raviart-Thomas ele-
ments for velocity, Nédélec elements for vorticity, and piecewise constant pres-

sure approximations. In particular, this choice produces exactly divergence-free
velocity approximations. We establish existence of discrete solutions and show
their convergence to the weak solution of the continuous coupled problem. Fi-
nally, we report several numerical experiments illustrating the behaviour of the

proposed scheme.
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1. Introduction. Reaction-diffusion systems can explain many phenomena taking
place in diverse disciplines such as industrial and environmental processes, biomed-
ical applications, or population dynamics. For instance, non-equilibrium effects
associated to mass exchange and local configuration modifications in the concen-
tration of species are usually represented in terms of classical reaction-diffusion
equations. These models allow to reproduce chaos, spatiotemporal patterns, rhyth-
mic and oscillatory scenarios, and many other mechanisms. Nevertheless, in most
of these applications the reactions do not occur in complete isolation. The species
are rather immersed in a fluid, or they move within (and interact with) a fluid-solid
continuum, and the motion of the fluid inevitably affects that of the species. In some
circumstances, reciprocal effects might be substantially large, therefore leading to
local changes in the observed flow patterns. More specifically, here it is assumed
that the medium where the chemical reactions develop is a porous material satu-
rated with an incompressible fluid. We remark that we are interested in viscous
flows and consequently, the linear momentum and mass conservation for the fluid
are governed by the Brinkman equations. The regime under study is relevant to
fluids within highly porous structures composed by light fixed particles [7]. As indi-
cated above, we also suppose that the local fluctuations of a species’ concentration
is important enough to affect the fluid flow. In turn, the reaction-diffusion equations
include additional terms accounting for the advection of each species with the fluid
velocity, therefore improving the mixing and interaction properties with respect to
those observed under pure diffusion effects [13]. Diverse types of continuum-based
models resulting in reaction-diffusion-momentum equations have been applied for
e.g. enzyme reactions advected with a known Poiseuille velocity profile [16], pop-
ulation kinetics on moving domains [28, 35], the control of drug release within soft
living tissue [9, 15], or biochemical interactions on growing surfaces [12].

We aim at developing numerical solutions to a class of similar systems, also
addressing the solvability of the governing equations, the expected properties of
the underlying solutions, and the convergence behaviour of suitable finite element
schemes. More precisely, at both continuous and discrete levels, the Brinkman
equations are set in a mixed form (that is, the associated formulation possesses
a saddle-point structure involving the vorticity as additional unknown) whereas
the formulation of the reaction-diffusion system is written exclusively in terms of
the primal variables, in this case the species’ concentration. Such a structure is
motivated by the need of accurate vorticity rendering, obtained directly without
postprocessing it from typically low-order discrete velocities (which usually leads to
insufficiently reliable approximations). The nonlinear reaction-diffusion system will
be placed in the framework of general semilinear parabolic equations and its well-
posedness, for a fixed velocity, follows from the classical theory of Ladyženskaja [22].
On the other hand, for a fixed species’ concentration, a number of recent Brinkman
formulations based on vorticity, pressure and velocity are available from the litera-
ture [3, 5, 6, 19] (see also [14]). Here we adopt the one introduced in [4], where the
well-posedness of the flow equations is established thanks to the classical Babuška-
Brezzi framework. In turn, the fully coupled problem is analysed using a Schauder
fixed-point approach. Perhaps the closest contributions in the spirit of the present
study are the error estimation for finite element formulations to doubly-diffusive
Boussinesq flows presented in [2], the two-sidedly degenerate chemotaxis-fluid cou-
pled system from [11] whose solvability relies on a regularisation step combined with
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compactness arguments; and the general analysis for degenerate parabolic equations
idealising reactive solute transport in porous media recently carried out in [21].

A further goal is to propose a numerical method based on piecewise linear and
continuous polynomials for the species’ concentrations, whereas the set of flow equa-
tions is discretised using a mixed approach based on Raviart-Thomas elements for
the approximation of the velocity, Nédélec elements for vorticity, and piecewise con-
stants for the pressure. The computational burden of this algorithm is comparable
to classical low-cost approximations as the so-called MINI element for velocity-
pressure formulations. On top of that, the proposed finite element method provides
divergence-free velocities, thus preserving an essential constraint of the underlying
physical system. Based on the present formulation, the stability properties of differ-
ent staggered coupling techniques have been recently analysed in [24]. Other recent
contributions regarding the numerical discretisation for related models for reactive
solute transport in porous media (but using Darcy descriptions of flow), include the
formulation and convergence studies for mixed and conformal methods as presented
in [1, 8, 20,27,30,31].

After this introductory section, the remainder of the paper is structured in the
following manner. Section 2 states the model problem and introduces the concept
of weak solutions, together with an auxiliary coupled problem. The solvability of
these auxiliary equations is established in Section 3, using a fixed-point approach.
The proof of uniqueness of weak solution is postponed to Section 4. Section 5 deals
with the numerical approximation of the model problem, using mixed finite elements
and a first-order backward Euler time advancing scheme. We provide in Section 6
a set of numerical tests to illustrate the properties of the numerical scheme and
the features of the coupled model, and we close in Section 7 with a summary and
discussion of possible extensions to this work.

2. Governing equations.

2.1. Problem statement. Let Ω ⊂ R3, be a simply connected, and bounded
porous domain saturated with a Newtonian incompressible fluid, where also a
bacterium and some chemical species (diffusible agents or nutrients) are present.
Viscous flow in the porous medium is usually modelled with Brinkman equations
stating momentum and mass conservation of the fluid. In addition, the Reynolds
transport principle applied to mass conservation of the interacting species yields
an advection-reaction-diffusion system. The physical scenario of interest can be
therefore described by a coupled system written in terms of the fluid velocity u,
the rescaled fluid vorticity ω, the fluid pressure p, and the volumetric fraction (or
concentration) of the bacterium c and of the chemical substance s. Let t denote
the time variable taking values in the interval (0, T ], where T is a given final time.
Then for a.e. (x, t) ∈ ΩT := Ω× (0, T ], we consider

∂tc+ u · ∇c− div(Dc(c)∇c) = Gc(c, s), ∂ts+ u · ∇s− div(Ds(s)∇s) = Gs(c, s),

K−1u +
√
µ curlω +∇p = sg + f , ω −√µ curlu = 0, divu = 0,

(2.1)

where µ is the fluid viscosity (in the considered regime, it is assumed independent of
the bacteria and chemical concentrations), K(x) is the permeability tensor rescaled
with viscosity, sg represents the force exerted by the bacteria on the fluid motion
(where g is the gravitational acceleration, or any other particular force to which
the species comply), and f(x, t) is an external force (e.g. centrifugal) applied to
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the porous medium. Moreover, Dc, Ds, Gc, Gs are concentration-dependent coef-
ficients determining, respectively, the nonlinear diffusivities and reaction kinetics
(representing production and degradation) of bacteria and chemical species.

Equations (2.1) are complemented with the following boundary and initial data:

(cu−Dc(c)∇c) · n = (su−Ds(s)∇s) · n = 0 (x, t) ∈ ∂Ω× (0, T ],

u · n = u∂ , ω × n = ω∂ (x, t) ∈ ∂Ω× (0, T ],

c = c0, s = s0 (x, t) ∈ Ω× {0},
(2.2)

representing that the species cannot leave the medium and that a normal veloc-
ity u∂ together with a compatible vorticity trace ω∂ are imposed along the do-
main boundary ∂Ω. The presentation will be restricted however to homogeneous
boundary conditions. The analysis readily extends to the non-homogeneous case by
classical lifting arguments.

2.2. Main assumptions. We suppose that the permeability tensor K ∈ [C(Ω̄)]3×3

is symmetric and uniformly positive definite. So is its inverse, i.e., there exists C > 0
such that

vtK−1(x)v ≥ C|v|2 ∀ v ∈ R3, ∀ x ∈ Ω. (2.3)

In addition, the diffusivities are assumed always positive, coercive, and continuous:
for i ∈ {s, c},

Di : [0, 1] 7→ R+ is continuous, 0 < Dmin ≤ Di(m) ≤ Dmax <∞, m ∈ R.
(2.4)

Regarding the reaction terms Gc, Gs, we assume they are continuous functions and
there exist constants Cc, Cs, C > 0 such that

|Gc(c, s)| ≤ Cc(1 + |c|+ |s|), |Gs(c, s)| ≤ Cs(1 + |c|+ |s|) for all c, s ≥ 0,

|Gκ(c1, s1)−Gκ(c2, s2)| ≤ C(|c1 − c2|+ |s1 − s2|),
for all c1, c2, s1, s2 ≥ 0 and κ = c, s,

Gc(c, s) = ν1 and Gs(c, s) = ν2 if c ≤ 0 or s ≤ 0, (2.5)

for some parameters ν1, ν2 > 0. Initial data are assumed nonnegative and regular
enough

c0, s0 ≥ 0, c0, s0 ∈ L∞(Ω). (2.6)

Observe that for constant coefficients Dc, Ds, Gc, Gs, problem (2.1) might also serve
as a model for the coupling of Newtonian flows with mass and heat transport [32].

2.3. Weak solutions. According to (2.2), let us introduce the functional spaces

H0(div; Ω) =
{
v ∈ H(div; Ω) : v · n = 0 on ∂Ω

}
,

H0(curl; Ω) =
{
z ∈ H(curl; Ω) : z × n = 0 on ∂Ω

}
,

where H(div; Ω) is the space of square integrable vectorial functions whose diver-
gence is a scalar square integrable function in Ω. We then proceed, for a given t > 0,
to test the first two equations in (2.1) with functions in H1

0(Ω), the third equation in
(2.1) against functions in H0(div; Ω), the fourth equation in (2.1) against functions
in H0(curl; Ω) and to integrate by parts. The last equation is tested with functions
in L2

0(Ω) (denoting the scalar space of square integrable functions having zero mean
value in Ω) and no integration by parts is applied. Consequently, and using (2.2)
we can give the following definition.
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Definition 2.1. In view of the properties outlined in Section 2.2, we shall say that
the function (c, s,u,ω, p) is a weak solution to (2.1) if

s, c ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ; H1(Ω)), ∂ts, ∂tc ∈ L2(0, T ; H1(Ω)′),

u ∈ L2(0, T ; H(div; Ω)), ω ∈ L2(0, T ; H(curl; Ω)), p ∈ L2(0, T ; L2
0(Ω)),

and ∫ T

0

〈∂tc,mc〉dt+

∫∫
ΩT

(Dc(c)∇c− cu) · ∇mc dxdt

=

∫∫
ΩT

Gc(c, s)m
c dxdt,∫ T

0

〈∂ts,ms〉dt+

∫∫
ΩT

(Ds(s)∇s− su) · ∇ms dxdt

=

∫∫
ΩT

Gs(c, s)m
s dxdt,∫∫

ΩT

K−1u · v dxdt+
√
µ

∫∫
ΩT

curlω · v dxdt−
∫∫

ΩT

p div v dxdt

=

∫∫
ΩT

(sg + f) · v dxdt,

√
µ

∫∫
ΩT

curl z · udxdt−
∫∫

ΩT

ω · z dxdt = 0,

−
∫∫

ΩT

q divu dxdt = 0,

for all mi ∈ L2(0, T ; H1(Ω)), v ∈ L2(0, T ; H0(div; Ω)), z ∈ L2(0, T ; H0(curl; Ω)),
q ∈ L2(0, T ; L2

0(Ω)).

Our first main result states existence of weak solutions to the reaction-diffusion-
Brinkman equations. The analysis of uniqueness will be postponed to Section 4.

Theorem 2.2. Assume that conditions (2.3), (2.4) and (2.5) hold. If c0, s0 ∈
L∞(Ω) with c0 ≥ 0 and s0 ≥ 0 a.e. in Ω, then there exists a weak solution of (2.1)-
(2.2) in the sense of Definition 2.1. Moreover, the solution (c, s) is nonnegative and
bounded in L∞(ΩT ,R2).

The proof of this result is based on an application of Schauder’s fixed-point theo-
rem (in an appropriate functional setting) with the derivation of a priori estimates
and the compactness arguments, to the following uncoupled system

∂tc+ u · ∇c− div(Dc(c)∇c) = Gc(c, s), ∂ts+ u · ∇s− div(Ds(s)∇s) = Gs(c, s),

K−1u +
√
µ curlω +∇p = ŝg + f , ω −√µ curlu = 0, divu = 0,

(2.7)

where ŝ is a fixed function.

3. Existence result: Fixed-point approach. In this section we prove the exis-
tence of solutions to (2.7), looking first at the solvability of the uncoupled systems.
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3.1. Preliminaries. Let us recall the following abstract result (see e.g. [17, Theo-
rem 1.3]):

Theorem 3.1. Let (X , 〈·, ·〉X ) be a Hilbert space. Let A : X ×X → R be a bounded
symmetric bilinear form, and let G : X → R be a bounded functional. Assume that
there exists β̄ > 0 such that

sup
y∈X
y 6=0

A(x, y)

‖y‖X
≥ β̄ ‖x‖X ∀x ∈ X .

Then, there exists a unique x ∈ X , such that

A(x, y) = G(y) ∀ y ∈ X .

Moreover, there exists C > 0, independent of the solution, such that

‖x‖X ≤ C‖G‖X ′ .

Let us also consider the kernel of the bilinear form

∫
Ω

q divudx, that is

X := {v ∈ H0(div; Ω) :

∫
Ω

q div v dx = 0, ∀q ∈ L2
0(Ω)}

= {v ∈ H0(div; Ω) : div v = 0 a.e. in Ω}.

Moreover, we endow the space H(curl; Ω) with the following µ-dependent norm:

‖z‖2H(curl;Ω) := ‖z‖20,Ω + µ‖ curl z‖20,Ω,

and recall the following inf-sup condition (cf. [17]): there exists β2 > 0 only de-
pending on Ω, such that

sup
v∈H(div;Ω)

v 6=0

∣∣∣∣∣
∫

Ω

q div v dx

∣∣∣∣∣
‖v‖H(div;Ω)

≥ β2‖q‖0,Ω ∀q ∈ L2
0(Ω). (3.1)

3.2. The fixed-point method. In view of invoking Schauder’s fixed-point theo-
rem to establish solvability of (2.7), we introduce the following closed subset of the
Banach space L2(ΩT ):

Kφ = {φ ∈ L2(ΩT ) : 0 ≤ φ(x, t) ≤ e(β−λ)tkm, for a.e. (x, t) ∈ ΩT }, (3.2)

for φ ∈ {c, s}, where km ≥ sup{‖c0‖L∞(Ω) , ‖s0‖L∞(Ω)}, and λ, β are defined in (3.6)

and Lemma 3.4, respectively. Our idea is quite simple, for a given ŝ ∈ Ks we find
first the velocity u and then the pair (c, s) solutions of (2.7). Next, and thanks to
Theorem 3.1, we can assert the solvability of the Brinkman equations for a fixed
ŝ ∈ Ks and for any t > 0.

Lemma 3.2. Assume that ŝ ∈ Ks. Then, the variational problem∫
Ω

K−1u · v dx +
√
µ

∫
Ω

curlω · v dx−
∫

Ω

p div v dx =

∫
Ω

(ŝg + f) · v dx,

√
µ

∫
Ω

curl z · udx−
∫

Ω

ω · z dx = 0,

−
∫

Ω

q divudx = 0,

(3.3)
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admits a unique solution (u,ω, p) ∈ H(div; Ω) × H(curl; Ω) × L2
0(Ω). Moreover,

there exists C > 0 independent of µ such that

‖u‖H(div;Ω) + ‖ω‖H(curl;Ω) + ‖p‖0,Ω
≤ C

(
‖ŝ‖0,Ω‖g‖∞,Ω + ‖f‖0,Ω + ‖u∂‖−1/2,∂Ω + ‖ω∂‖−1/2,∂Ω

)
.

(3.4)

Proof. First, we observe that, owing to the inf-sup condition (3.1), problem (3.3) is
equivalent to: Find (u,ω) ∈ X×H(curl; Ω) such that∫

Ω

K−1u · v dx +
√
µ

∫
Ω

curlω · v dx =

∫
Ω

(ŝg + f) · v dx, ∀v ∈ X,

√
µ

∫
Ω

curl z · u dx−
∫

Ω

ω · z dx = 0, ∀z ∈ H0(curl; Ω).

Then, the desired result follows from Theorem 3.1, repeating the argument employed
in the proofs of [4, Theorem 2.2 and Corollary 2.1].

On the other hand, given a fixed velocity u ∈ L2(0, T ; H(div; Ω)), the following
result establishes the solvability of the reaction-diffusion system:

Lemma 3.3. For any u ∈ L2(0, T ; H(div; Ω)), the system∫ T

0

〈∂tc,mc〉dt+

∫∫
ΩT

(Dc(c)∇c− cu) · ∇mc dxdt =

∫∫
ΩT

Gc(c, s)m
c dxdt,∫ T

0

〈∂ts,ms〉dt+

∫∫
ΩT

(Ds(s)∇s− su) · ∇ms dxdt =

∫∫
ΩT

Gs(c, s)m
s dxdt,

(3.5)

is uniquely solvable and there exists C > 0, depending on ‖c0‖0,Ω and ‖s0‖0,Ω, such
that

‖c‖L2(0,T ;H1(Ω)) + ‖s‖L2(0,T ;H1(Ω)) ≤ C.

Proof. It suffices to combine assumptions (2.4), (2.6) with the general result for
quasilinear parabolic problems given in [22, Section 5].

As the next step, we consider a constant λ > 0 and define the auxiliary variables
(φc, φs) by setting

c = eλtφc and s = eλtφs. (3.6)

Then (c, s) satisfies the strong form of (3.5) with diffusion and reaction terms re-
placed, respectively, by Dc(c) := Dc(e

λtc) and Ds(s) := Ds(e
λts),

Gc(c, s) := −λc+ e−λtGc(e
λtc, eλts),

Gs(c, s) := −λs+ e−λtGs(e
λtc, eλts).

We now introduce a map R : Ks → Ks such that R(ŝ) = s, where s solves (3.5).
The goal is to prove that such map has a fixed-point. First, let us show that R
is a continuous mapping. Let (ŝn)n be a sequence in Ks and ŝ ∈ Ks be such that
ŝn → ŝ in L2(ΩT ) as n→∞. Let us then define sn = R(ŝn), i.e., sn is the solution
of (3.5) associated with ŝn and the solution u of (3.3). The objective is to show
that sn converges to R(ŝ) in L2(ΩT ). We start with the following lemma:

Lemma 3.4. Let (cn, sn)n be the solution to problem (3.5) and recall that ŝ ∈ Ks.
Then
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(i) There exists a constant γ ≥ 0 such that 0 ≤ cn(x, t), sn(x, t) ≤ eγtkm, for a.e.
(x, t) ∈ ΩT , where km is defined as in (3.2).

(ii) The sequence (cn, sn)n is bounded in L2(0, T ; H1(Ω,R2))∩L∞(0, T ; L2(Ω,R2)).

(iii) The sequence (∂tcn, ∂tsn)n is bounded in L2(0, T ; (H1(Ω,R2))
′
).

(iv) The sequence (cn, sn)n is relatively compact in L2(ΩT ).

Proof. (i) We replace the strong form of (3.5) by

∂tcn−div(Dc(cn)∇cn)+u ·∇cn = −λcn+e−λtGc(e
λtcn, e

λtsn), in ΩT . (3.7)

Multiplying (3.7) by −c−n =
cn − |cn|

2
and integrating over Ω, we obtain

1

2

d

dt

∫
Ω

∣∣c−n ∣∣2dx +Dmin

∫
Ω

∣∣∇c−n ∣∣2dx−
∫

Ω

c−nu · ∇cndx− λ
∫

Ω

cn c
−
n dx

≤ −
∫

Ω

e−λtGc(e
λtcn, e

λtsn)c−n dx.

(3.8)

Now, we use that divu = 0 and (2.5) to deduce

−
∫

Ω

c−nu · ∇cn dx =
1

2

∫
Ω

u · ∇(c−n )2 dx = 0,

and 
−
∫

Ω

e−λtGc(e
λtcn, e

λtsn)c−n dx ≤ 0 if cn ≤ 0,

−
∫

Ω

e−λtGc(e
λtcn, e

λtsn)c−n dx = 0 if cn > 0.

According to the positivity of the second and the fourth terms in the left-hand side
of (3.8), we get

1

2

d

dt

∫
Ω

∣∣c−n ∣∣2 dx ≤ 0.

Since c0 is nonnegative, we deduce that c−n = 0, and reasoning similarly we have
that s−n = 0.

Next, we let kc, ks ∈ R such that kc ≥ ‖c0‖L∞(Ω) and ks ≥ ‖s0‖L∞(Ω). Let us

consider t ∈ (0, T ), and proceed to multiply (3.7) by

ξc := (cn − e(β−λ)tk)+, with β ≥ λ, and with k = sup{kc, ks},
and to integrate over Ω, which yields that there exists some constant C6 > 0 such
that

1

2

d

dt

∫
Ω

ξ2
c dx + (β − λ)

∫
Ω

e(β−λ)tk ξc dx +Dmin

∫
Ω

|∇ξc|2 dx

+

∫
Ω

ξc u · ∇cn dx + λ

∫
Ω

cn ξcdx

=
1

2

d

dt

∫
Ω

ξ2
c dx + β

∫
Ω

e(β−λ)tk ξc dx +Dmin

∫
Ω

|∇ξc|2 dx

+
1

2

∫
Ω

u · (∇ξ2
c ) dx + λ

∫
Ω

ξ2
c dx

≤
∫

Ω

e−λtGc(e
λtcn, e

λtsn)ξc dx

≤ C6

(∫
Ω

e(β−λ)tkξc dx +

∫
Ω

ξ2
c dx +

∫
Ω

ξ2
s dx

)
, (3.9)
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where ξs := (sn − e(β−λ)tk)+. Following an analogous treatment for sn, we get

1

2

d

dt

∫
Ω

ξ2
s dx + (β − λ)

∫
Ω

e(β−λ)tkξs dx +Dmin

∫
Ω

|∇ξs|2 dx

+

∫
Ω

ξsu · ∇sn dx + λ

∫
Ω

snξs dx

≤ C7

(∫
Ω

e(β−λ)tkξs dx +

∫
Ω

ξ2
c dx +

∫
Ω

ξ2
s dx

)
, (3.10)

for some constant C7 > 0. We next observe that∫
Ω

u · ∇(ξc)
2 dx = 0,

∫
Ω

u · ∇(ξs)
2 dx = 0,

which inserted into (3.9) and (3.10), implies that

1

2

d

dt

∫
Ω

ξ2
c dx

+
1

2

d

dt

∫
Ω

ξ2
s dx + (β − C6 − C7)e(β−λ)tk

(∫
Ω

ξc dx +

∫
Ω

ξs dx

)
+(λ− C6 − C7)

∫
Ω

ξ2
c dx + (λ− C6 − C7)

∫
Ω

ξ2
s dx ≤ 0.

(3.11)

Finally for β ≥ λ ≥ C6 + C7, an application of (3.11) yields

d

dt

∫
Ω

|ξc|2 dx +
d

dt

∫
Ω

|ξs|2 dx ≤ 0,

and exploiting that c0, s0 ≤ k in Ω, we conclude that cn(·, t) ≤ e(β−λ)tk and
sn(·, t) ≤ e(β−λ)tk in Ω× (0, T ).

(ii) We multiply equation (3.7) by cn and integrate over Ω to obtain

1

2

d

dt

∫
Ω

|cn|2 dx +Dmin

∫
Ω

|∇cn|2 dx +

∫
Ω

cnu · ∇cn dx + λ

∫
Ω

|cn|2 dx

≤
∫

Ω

e−λtGc(e
λtcn, e

λtsn)cn dx.
(3.12)

Invoking the boundedness of cn and sn, we get that the integral on the right-hand
side is bounded independently of n. Then using that∫

Ω

cnu · ∇cn dx =
1

2

∫
Ω

u · ∇(cn)2 dx = 0,

we deduce from (3.12) the following bound

1

2

d

dt

∫
Ω

|cn|2 dx +Dmin

∫
Ω

|∇cn|2 dx ≤ C8,

valid for some constant C8 > 0 independent of n. This completes the proof of (ii).
(iii) Next, we multiply (3.7) by ϕ ∈ L2(0, T ; H1(Ω)) and use the boundedness of

cn and sn to get ∣∣∣∣∣
∫ T

0

〈∂tcn, ϕ〉 dt

∣∣∣∣∣
=

∣∣∣∣∣−
∫

Ω

Dc(cn)∇cn · ϕdx +

∫
Ω

cnu · ∇ϕdx



78 V. ANAYA, M. BENDAHMANE, D. MORA AND R. RUIZ BAIER

−λ
∫

Ω

cnϕdx +

∫
Ω

e−λtGc(e
λtcn, e

λtsn)ϕdx

∣∣∣∣∣
≤ Dmax ‖∇cn‖L2(ΩT ) ‖ϕ‖L2(ΩT ) + C9 ‖u‖0,Ω ‖∇ϕ‖L2(ΩT )

+C10

(
‖cn‖L2(ΩT ) + ‖sn‖L2(ΩT )

)
‖ϕ‖L2(ΩT )

≤ C11 ‖ϕ‖L2(0,T ;H1(Ω)) ,

for some constants C9, C10, C11 > 0 independent of n. Consequently, we end up
with the bound

‖∂tcn‖L2(0,T ;(H1(Ω))′) ≤ C11. (3.13)

Working on the same lines as for (cn)n, the counterpart of (ii)− (iii) and (3.13) for
(sn)n can be obtained. Finally, (iv) is deduced from (ii) and (iii).

In summary, Lemmas 3.2, and 3.4 imply that there exists

(c, s,u,ω, p) ∈ L2(0, T ; H1(Ω))2 ×H(div; Ω)×H(curl; Ω)× L2
0(Ω)

such that, up to extracting subsequences if necessary,{
(cn, sn)→ (c, s) in L2(ΩT ,R2) strongly and a.e., and in L2(0, T ; H1(Ω)) weakly,

(un,ωn, pn)→ (u,ω, p) in H(div; Ω)×H(curl; Ω)× L2
0(Ω) weakly,

and consequently, the continuity of R on Ks holds. Moreover, Lemma 3.4 indicates
the boundedness of R(Ks) within the set

S =
{
s ∈ L2(0, T ; H1(Ω)) : ∂ts ∈ L2(0, T ; (H1(Ω))′)

}
. (3.14)

Appealing to the theory of compact sets [33], the compactness of the map S ↪→
L2(ΩT ) implies that of R. Therefore, and thanks to Schauder’s fixed-point theorem,
the operator R has a fixed point s. That is, there exists a solution to∫ T

0

〈∂tc,mc〉dt+

∫∫
ΩT

(Dc(c)∇c− cu) · ∇mc dxdt =

∫∫
ΩT

Gc(c, s)m
c dxdt,∫ T

0

〈∂ts,ms〉dt+

∫∫
ΩT

(Ds(s)∇s− su) · ∇ms dxdt =

∫∫
ΩT

Gs(c, s)m
s dxdt,∫∫

ΩT

K−1u · v dxdt+
√
µ

∫∫
ΩT

v · curlω dxdt−
∫∫

ΩT

pdiv v dxdt (3.15)∫∫
ΩT

(sg + f) · v dxdt,

√
µ

∫∫
ΩT

u · curl z dxdt−
∫∫

ΩT

ω · z dxdt = 0,

−
∫∫

ΩT

q divudxdt = 0,

for all mi ∈ L2(0, T ; H1(Ω)), v ∈ L2(0, T ; H0(div; Ω)), z ∈ L2(0, T ; H0(curl; Ω)),
q ∈ L2(0, T ; L2

0(Ω)).

4. Uniqueness of weak solutions. The following result completes the analysis
of unique solvability for the reaction-diffusion-Brinkman system.

Theorem 4.1. Assume (2.3)-(2.5) hold, and let (c1, s1,u1,ω1, p1), (c2, s2,u2,ω2,
p2) be two weak solutions to (2.1)-(2.2), associated with the data c0 = c1,0, s0 = s1,0,
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g = g1, f = f1 and c0 = c2,0, s0 = s2,0, g = g2, f = f2, respectively. Then, for
any t ∈ (0, T ] there exists C > 0 such that∫∫

Ωt

(
|C|2 + |S|2 + |U|2 + |W|2 + |P|2

)
dx dσ

≤ C

(∫
Ω

(
|c1,0(x)− c2,0(x)|2 + |s1,0(x)− s2,0(x)|2

)
dx

+

∫∫
Ωt

(
|g1 − g2|

2
+ |f1 − f2|

2
)

dx dσ

)
,

(4.1)

where C = c1 − c2, S = s1 − s2, U = u1 − u2, W = ω1 − ω2, and P = p1 − p2. In
particular, there exists at most one weak solution to the reaction-diffusion-Brinkman
system (2.1)-(2.2).

Proof. First, we observe that the (U ,W,P) satisfies∫∫
Ωt

K−1U · v dx dσ +
√
µ

∫∫
Ωt

v · curlW dx dσ −
∫∫

Ωt

P div v dx dσ

=

∫∫
Ωt

(s1g1 − s2g2) · v dx dσ +

∫∫
Ωt

(f1 − f2) · v dx dσ ,

√
µ

∫∫
Ωt

U · curl z dx dσ −
∫∫

Ωt

W · z dx dσ = 0,

−
∫∫

Ωt

q divU dx dσ = 0,

(4.2)

for t ∈ (0, T ) and for all v ∈ L2(0, T ; H0(div; Ω)), z ∈ L2(0, T ; H0(curl; Ω)), q ∈
L2(0, T ; L2

0(Ω)).
After substituting v = U , z = W, q = P in (4.2) and adding the resulting

equations, we can invoke the continuous dependence on the data (3.4) to establish
the a priori bound∫∫

Ωt

|U|2 dx dσ +

∫∫
Ωt

|W|2 dx dσ +

∫∫
Ωt

|P|2 dx dσ

≤ C14

∫∫
Ωt

|S|2 dx dσ + C15

(∫∫
Ωt

|g1 − g2|
2

dx dσ +

∫∫
Ωt

|f1 − f2|
2

dx dσ

)
,

(4.3)

for some constant C15 > 0. Next, note that (C,S) satisfies

−
∫ t

0

〈C, ∂tmc〉dσ +

∫∫
Ωt

(Dc(c1)∇c1 −Dc(c2)∇c2) · ∇mc dx dσ

−
∫∫

Ωt

c1U · ∇mc dx dσ −
∫∫

Ωt

Cu2 · ∇mc dx dσ

=

∫
Ω

C0(x)mc(x, 0) dx +

∫∫
Ωt

(Gc(c1, s1)−Gc(c2, s2))mc dx dσ ,

−
∫ t

0

〈S, ∂tms〉dσ +

∫∫
Ωt

(Ds(s1)∇s1 −Ds(s2)∇s2) · ∇ms dx dσ

(4.4)
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−
∫∫

Ωt

s1U · ∇ms dx dσ −
∫∫

Ωt

Su2 · ∇ms dx dσ

=

∫
Ω

S0(x)mc(x, 0) dx +

∫∫
Ωt

(Gs(c1, s1)−Gs(c2, s2))ms dx dσ ,

for t ∈ (0, T ) and for all mi ∈ L2(0, T ; H1(Ω)) and ∂tm
i ∈ L2(0, T ; (H1(Ω))′) with

mc(·, T ) = 0, i = c, s. Now, for t0 ∈ (0, T ) we take

mi(x, t) =


∫ t0

t

(Di(i1)−Di(i2)) dσ for 0 ≤ t < t0,

0 for t0 ≤ t ≤ T,

where the function D is the so-called Kirchhoff transform (see for e.g. [25]) Di(i) :=∫ i

0

Di(r) dr, for i = c, s. Using these relations in (4.4), and recalling that the

function D is strictly increasing, we get

−
∫ T

0

〈C, ∂tmc〉dσ =

∫ t0

0

〈C, (Dc(c1)−Dc(c2))〉dσ ≥ CD
∫∫

Ωt0

|C|2 dx dσ , (4.5)∫∫
Ωt

(Dc(c1)∇c1 −Dc(c2)∇c2) · ∇mc dx dσ

=
1

2

∫
Ω

∣∣∣∣∇∫ t0

0

(Dc(c1)−Dc(c2)) dσ

∣∣∣∣2 dx,∫
Ω

C0(x)mc(x, 0) dx =

∫ t0

t

∫
Ω

C0(x)(Dc(c1)−Dc(c2)) dx dσ

≤ C16

∫
Ω

|C0(x)|2 dx +
CD
4

∫∫
Ωt0

|C|2 dx dσ ,

for some constants CD, C16 > 0. Moreover,∫∫
Ωt

c1U · ∇mc dx dσ ≤ C17

∫ t0

0

∫∫
Ωt

|U|2 dx dσ dt

+
1

8

∫
Ω

∣∣∣∣∇ ∫ t0

0

(Dc(c1)−Dc(c2)) dσ

∣∣∣∣2 dx,∫∫
Ωt

Cu2 · ∇mc dx dσ ≤ C18

∫ t0

0

∫∫
Ωt

|C|2 dx dσ dt

+
1

8

∫
Ω

∣∣∣∣∇ ∫ t0

0

(Dc(c1)−Dc(c2)) dσ

∣∣∣∣2 dx,

(4.6)

for some constants C17, C18 > 0 depending on ‖c1‖L∞(ΩT ) and ‖u2‖L∞(ΩT ,R3) (the
latter being bounded thanks to classical maximal regularity results for Stokes equa-
tions cf. [36]). Next, we use (2.5) and the L∞-bounds of (c1, s1) and (c2, s2), leading
to∫∫

Ωt

(Gs(c1, s1)−Gs(c2, s2))ms dx dσ ≤ C19

∫ t0

0

(∫∫
Ωt

(|C|2 + |S|2) dx dσ
)

dt

+
CD
4

∫∫
Ωt0

|C|2 dx dσ ,

(4.7)
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for some constant C19 > 0. We proceed to collect the results (4.3) and (4.5)-(4.7),
to infer that

CD
2

∫∫
Ωt0

|C|2 dx dσ ≤ C16

∫
Ω

|C0(x)|2 dx

+ C20

(∫∫
Ωt

|g1 − g2|
2

dx dσ +

∫∫
Ωt

|f1 − f2|
2

dx dσ

)

+ C21

∫ t0

0

(∫∫
Ωt

(|C|2 + |S|2) dxdσ
)

dt,

(4.8)

for some constants C20, C21 > 0. Similarly we get for the equation of S
CD
2

∫∫
Ωt0

|S|2 dx dσ ≤ C22

∫
Ω

|S0(x)|2 dx

+ C23

(∫∫
Ωt

|g1 − g2|
2

dxdσ +

∫∫
Ωt

|f1 − f2|
2

dxdσ

)

+ C24

∫ t0

0

(∫∫
Ωt

(|C|2 + |S|2) dxdσ
)

dt,

(4.9)

for some constants C22, C23, C24 > 0. Thus (4.8) and (4.9) imply∫∫
Ωt0

(|C|2 + |S|2) dx dσ ≤ C25

∫
Ω

(
|C0(x)|2 + |S0(x)|2

)
dx

+ C26

∫ t0

0

(∫∫
Ωt

(|C|2 + |S|2) dxdσ
)

dt

+ C27

(∫∫
Ωt

|g1 − g2|
2

dxdσ +

∫∫
Ωt

|f1 − f2|
2

dxdσ

)
,

(4.10)

for some constants C25, C26, C27 > 0. Then, an application of Gronwall’s inequality
to (4.10) combined with (4.3) proves (4.1).

5. Numerical approximation. In this section, we construct a primal-mixed fully-
discrete scheme for the approximation of the coupled system (2.1). The finite ele-
ment spaces characterising the semi-discrete problem are then specified, and a proof
of convergence to the unique weak solution (presented in Definition 2.1) is outlined.

5.1. The semi-discrete scheme. Let Th be a regular family of triangulations of
Ω̄ by tetrahedra K of maximum diameter h. Given an integer k ≥ 0 and S ⊂ R3,
by Pk(S) we denote the space of polynomial functions defined in S of total degree
up to k, and define the following finite element subspaces

Vh=
{
mh ∈ H1(Ω) : mh|K ∈ P1(K)∀K ∈ Th

}
,

Hh=
{
vh ∈ H0(div; Ω) : vh|K ∈ RT0(K)∀K ∈ Th

}
,

Zh=
{
zh ∈ H(curl,Ω) : zh|K ∈ ND1(K)∀K ∈ Th

}
,

Qh=
{
qh ∈ L2

0(Ω) : qh|K ∈ P0(K)∀K ∈ Th
}
, (5.1)
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where for any K ∈ Th(Ω), the local lowest order Raviart-Thomas and edge space
of Nédélec type, are defined as RT0(K) = P0(K)3 ⊕ P0(K)x, and ND1(K) =
P0(K)3 ⊕ P0(K)3 × x, respectively.

Then, a Galerkin semi-discretisation associated to the formulation introduced in
Definition 2.1 reads: For t ∈ (0, T ] find (ch(t), sh(t),uh(t),ωh(t), ph(t)) ∈ Vh×Vh×
Hh × Zh ×Qh such that∫

Ω

∂tch(t)mc
h dx +

∫
Ω

(Dc(ch(t))∇ch(t)− ch(t)uh) · ∇mc
h dx

=

∫
Ω

Gc(ch(t), sh(t))mc
h dx,∫

Ω

∂tsh(t)ms
h dx +

∫
Ω

(Ds(sh(t))∇sh(t)− sh(t)uh) · ∇ms
h dx

=

∫
Ω

Gs(ch(t), sh(t))ms
h dx,∫

Ω

K−1uh(t) · vh dx +
√
µ

∫
Ω

curlvh · ωh(t) dx−
∫

Ω

ph(t) div vh dx

=

∫
Ω

(sh(t)g + f) · vh dx,

√
µ

∫
Ω

curluh(t) · zh dx−
∫

Ω

ωh(t) · zh dx = 0,

−
∫

Ω

qh divuh(t) dx = 0,

(5.2)

for all mc
h,m

s
h ∈ Vh, vh ∈ Hh, zh ∈ Zh, and qh ∈ Qh.

5.2. Euler time discretisation. Let c0h = PVh
(c0), s0

h = PVh
(s0) be appropriate

projections of the initial data, and consider the following fully discrete method
arising after backward Euler time discretisation using a fixed time step ∆t = T/N :
For n ∈ {1, . . . , N}, find (cnh, s

n
h,u

n
h,ω

n
h, p

n
h) ∈ Vh ×Vh ×Hh × Zh ×Qh such that∫

Ω

cnh−c
n−1
h

∆t
mc
h dx +

∫
Ω

(Dc(c
n
h)∇cnh − cnhunh) · ∇mc

h dx

=

∫
Ω

Gc(c
n−1
h , sn−1

h )mc
h dx,∫

Ω

snh−s
n−1
h

∆t
mc
h dx +

∫
Ω

(Ds(s
n
h)∇snh − snhunh) · ∇ms

h dx

=

∫
Ω

Gs(c
n−1
h , sn−1

h )ms
h dx,∫

Ω

K−1unh · vh dx +
√
µ

∫
Ω

vh · curlωnh dx−
∫

Ω

pnh div vh dx

=

∫
Ω

(snhg + f) · vh dx,

√
µ

∫
Ω

unh · curl zh dxdt−
∫

Ω

ωnh · zh dx = 0,

−
∫

Ω

qh divunh dx = 0,

(5.3)
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for all mc
h,m

s
h ∈ Vh, vh ∈ Hh, zh ∈ Zh, qh ∈ Qh, where the forcing term in

the momentum equation is discretised explicitly. We also stress that, owing to
the choice (5.1), the discrete velocities uh generated using either (5.2) or (5.3) are
exactly divergence-free, that is, divuh(t) = 0 and divunh = 0 in Ω (cf. [4]).

5.3. Sketched convergence analysis. Note that the positive and negative cuts
test functions may not be admissible in finite element context. Therefore, we cannot
obtain the maximum principle as in the continuous case. Comparing to the contin-
uous case, here we assume that the initial condition (c0, s0) is only in L2(Ω,R2).

In order to derive stability estimates, we employ the same kind of test functions
in the same combination of equations used in Section 3; whereas the chain rule for
time derivatives is now replaced by the convexity inequality

an(an − an−1) ≥ |a
n|2

2
−
∣∣an−1

∣∣2
2

,

to treat the finite difference discretisation of the time derivatives. Proceeding in this
way, we can obtain estimates (uniform in both h and ∆t) for the discrete Brinkman
solutions

‖uh‖L2(0,T ;H(div;Ω)) + ‖ωh‖L2(0,T ;H(curl;Ω)) + ‖ph‖L2(0,T ;L2
0(Ω)) ≤ C, (5.4)

and for the advection-reaction-diffusion system

‖ch‖L∞(0,T ;L2(Ω)) + ‖sh‖L∞(0,T ;L2(Ω)) + ‖∇ch‖L2(ΩT ) + ‖∇sh‖L2(ΩT ) ≤ C, (5.5)

for some constant C > 0.
The next goal is to establish the relative compactness in L2(ΩT ) of the sequences

(ch, sh), which is achieved by constructing space and time translates and using the
a priori estimates given above.

Lemma 5.1. There exists a constant C > 0 depending on Ω, T , c0 and s0 such
that ∫∫

Ωr×(0,T )

[
|ch(x + r, t)− ch(x, t)|2 + |sh(x + r, t)− sh(x, t)|2

]
dx dt

≤ C |r|2, (5.6)∫∫
Ω×(0,T−τ)

[
|ch(x, t+ τ)− ch(x, t)|2 + |sh(x, t+ τ)− sh(x, t)|2

]
dx dt

≤ C(τ + ∆t). (5.7)

for all r ∈ R3 and for all τ ∈ (0, T ), where Ωr = {x ∈ Ω, [x,x + r] ⊂ Ω}.

Proof. Let us introduce the space translates

(Jrch)(x, ·) = ch(x + r, ·)− ch(x, ·), and (Jrsh)(x, ·) = sh(x + r, ·)− sh(x, ·).

From the L2(0, T ; H1(Ω))−estimate for ch and sh, the bound∫ T

0

∫
Ωr

|Jrch|2 dx dt+

∫ T

0

∫
Ωr

|Jrsh|2 dx dt ≤ C|r|2, (5.8)

easily follows. It is then clear that the right-hand side in (5.8) vanishes as |r| → 0,
uniformly in h, which yields (5.6).

Next we introduce the time translates

(Thch)(·, t) := ch(·, t+ τ)− ch(·, t) and (Thsh)(·, t) := sh(·, t+ τ)− sh(·, t),
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and notice that for all t ∈ (0, T − τ ], these functions assume values in Vh (cf.
(5.1)). Therefore they can be used as test functions in the fully-discrete scheme
(5.3). Moreover, the previously proved uniform bounds for (ch, sh) and (∇ch,∇sh)
in L2(ΩT ,R2) imply analogous bounds for the translates T τ ch, T

τsh and ∇T τ ch,
∇T τsh in L2((0, T − τ)× Ω).

Let us now define (ch, sh) as the piecewise affine in t function in W 1,∞((0;T ];Vh)
interpolating the states (cnh, s

n
h)n=0,...,N ⊂ Vh at the points (n∆t)n=0,...,N (recall the

interpolation scheme nh = nn−1
h +

t− tn−1

∆t
(nnh −nn−1

h ) for n = c, s). Then we have∫
Ω

∂tchm
c
h dx +

∫
Ω

(Dc(ch)∇ch − chuh) · ∇mc
h dx =

∫
Ω

Gc(ch, sh)mc
h dx,∫

Ω

∂tshm
s
h dx +

∫
Ω

(Ds(sh)∇sh − shuh) · ∇ms
h dx =

∫
Ω

Gs(ch, sh)ms
h dx,

(5.9)

for all mc
h,m

s
h ∈ Vh. We integrate (5.9) with respect to time σ ∈ [t, t + τ ] (with

0 < τ < T ) and consider mc
h = T τ ch and ms

h = T τsh as test functions in the
resulting equations. Therefore∫ T−τ

0

∫
Ω

∣∣(Thc̄h)(x, t)
∣∣2 dx dt+

∫ T−τ

0

∫
Ω

∣∣(Ths̄h)(x, t)
∣∣2 dx dt

=

∫ T−τ

0

∫
Ω

(∫ t+τ

t

∂σ c̄h(x, σ) dσ
)

(Thch)(x, t) dx dt

+

∫ T−τ

0

∫
Ω

(∫ t+τ

t

∂σ s̄h(x, σ) dσ
)

(Thsh)(x, t) dx dt

= −
∫ T−τ

0

∫
Ω

∫ t+τ

t

(Dc(ch)∇ch(x, σ)− ch(x, t))uh(x)) · ∇(Thch)(x, t) dx dσ dt

−
∫ T−τ

0

∫
Ω

∫ t+τ

t

(Ds(sh)∇sh(x, σ)− sh(x, t))uh(x)) · ∇(Thsh)(x, t) dx dσ dt

+

∫ T−τ

0

∫
Ω

∫ t+τ

t

Gc(ch(x, t), sh(x, t))(Thch)(x, t) dx dσ dt

+

∫ T−τ

0

∫
Ω

∫ t+τ

t

Gs(ch(x, t), sh(x, t))(Thsh)(x, t) dx dσ dt

=: I1 + I2 + I3 + I4.

Now, we examine these integrals separately. For I1 we have

|I1| ≤ C

[∫ T−τ

0

∫
Ω

(∫ t+τ

t

|∇ch(x, σ)|2 dσ
)2

dx dt

] 1
2

×

[∫ T−τ

0

∫
Ω

∣∣∇(Thch)(x, t)
∣∣2 dx dt

] 1
2

≤ C τ,

and similarly |I2| ≤ C τ , for some constant C > 0. Herein we have used the Fubini

theorem (recall that
∫ t+τ
t

dσ = τ =
∫ σ
σ−τ dt), the divergence-free condition for the

discrete velocity, the Hölder inequality and the L2−bounds for (ch, sh), (∇ch,∇sh)
and (∇Thch,∇Thsh). Keeping in mind the growth assumptions on Gc, Gs, we can
then apply Cauchy-Schwarz inequality to deduce that |I3| + |I4| ≤ C τ, for some
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constant C > 0. Collecting these inequalities we readily get∫ T−τ

0

∫
Ω

(
|c̄h(·, t+ τ)− c̄h(·, t)|2 + |s̄h(·, t+ τ)− s̄h(·, t)|2

)
dx dt ≤ C τ.

Furthermore, the definition of (c̄h, s̄h) together with (5.5) eventually implies that

‖c̄h − ch‖2L2(ΩT ) ≤
N∑
n=1

∆t‖cnh − cn−1
h ‖2L2(Ω) ≤ C(∆t) → 0 as ∆t→ 0,

‖s̄h − sh‖2L2(ΩT ) ≤
N∑
n=1

∆t‖snh − sn−1
h ‖2L2(Ω) ≤ C(∆t) → 0 as ∆t→ 0,

which establishes (5.7), therefore finishing the proof.

Note that as a consequence of (5.4)-(5.5), Lemma 5.1, and Kolmogorov’s com-
pactness criterion (cf. [10, Theorem IV.25]), we can assert that there exists a sub-
sequence of (ch, sh,uh,ωh, ph), not re-labeled, such that, as h→ 0,

(ch, sh)→ (c, s) strongly in L2(ΩT ,R2) and in L2(0, T ; H1(Ω,R2)) weakly,

(uh,ωh, ph)→ (u,ω, p)

in L2(0, T ; H(div; Ω))× L2(0, T ; H(curl; Ω))× L2(0, T ; L2
0(Ω)) weakly.

These convergences allow us to identify the limit (c, s,u,ω, p) as the weak solution
of (2.1), and the convergence result is summarised as follows.

Theorem 5.2. Assume that conditions (2.3), (2.4) and (2.5) hold. If c0, s0 ∈
L2(Ω), then the finite element solution (cnh, s

n
h,u

n
h,ω

n
h, p

n
h), generated by (5.3), con-

verges along a subsequence to (c, s,u,ω, p) as h,∆t → 0, where (c, s,u,ω, p) is a
weak solution of (2.1)-(2.2) in the sense of Definition 2.1.

We observe that the error generated by the fully discrete scheme (5.3) has two
components: one due to the spatial discretisation and depending on the meshsize h,
and the error due to the time discretisation depending on the timestep ∆t. Given
the approximation properties of the employed finite element spaces and the time
stepping method (see e.g. [37]), we can expect the following convergence rates for
the proposed method

‖(c(·, tn), s(·, tn),u(·, tn),ω(·, tn), p(·, tn))− (cnh, s
n
h,u

n
h,ω

n
h, p

n
h)‖ ≤ C1h+ C2∆t,

(5.10)
with tn = n∆t, for n = 1, . . . , N and C1, C2 > 0 are constants independent of h
and ∆t. Here (cnh, s

n
h,u

n
h,ω

n
h, p

n
h) denotes the sequence generated by (5.3) for all

n = 1, . . . , N . A rigorous derivation of this space-time error estimate is part of
ongoing developments.

6. Numerical tests. We finally present a set of elementary examples to illustrate
the properties of the model and of the proposed finite element method. The cou-
pling between Brinkman and reaction-diffusion equations will be implemented either
via: a) a fully monolithic solution, b) an iterative Picard method splitting linear
Brinkman and fully explicit reaction-diffusion equations, and c) an iterative Picard
method with an embedded Newton algorithm for the linearisation of the reaction-
diffusion system. Rigorous convergence proofs for the Newton iteration and various
linear iterative schemes applied to similar problems in non-viscous flow in porous
media can be found in e.g. [27, 34]. For our particular scenario, efficient coupling
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D.o.f.
102 103 104 105

10−1

100

O(h)
eh(c)
eh(s)
eh(u)
eh(ω)
eh(p)

∆t
10−3 10−2

10−2

10−1

100

101

102 O(∆t)
E∆t(s)
E∆t(c)
E∆t(u)
E∆t(ω)
E∆t(p)

Figure 1. Example 1. Convergence tests for the spatial (left) and
temporal (right) discretisation via mixed P1 × P1 ×RT0 × P1 × P0

finite elements and backward Euler time stepping applied to (2.1).

strategies and thorough comparisons between dedicated solvers have been reported
in [24].

Example 1. Spatio-temporal accuracy. Let us consider the spatio-temporal do-
main ΩT = (0, 1)2 × (0, 0.1] and define the following exact solutions to (2.1) in the
case of constant diffusivities Dc, Ds:

c(x, t) = exp(−4Dcπ
2t)[cos(2πx) + cos(2πy)],

s(x, t) = exp(−4Dsπ
2t)[cos(2πx) + cos(2πy)], p(x, t) = x4 − y4,

u(x, t) = 3 sin(t)x2(x− 1)2y2(y − 1)2
(
x(x− 1)(2y − 1),−(2x− 1)y(y − 1)

)T
,

ω(x, t) = −6 sin(t)
√
µ[x(5x3 − 10x2 + 6x− 1)y3(y − 1)3

+ y(5y3 − 10y2 + 6y − 1)x3(x− 1)3].

(6.1)

The model parameters are set as µ = 1, Dc = 0.01, Ds = 0.5, g = (0,−1)T , and
K = I; the reaction kinetics are specified by

Gj(c, s) = 6π sin(t) exp(−4Djπ
2t)x2(x− 1)2y2(y − 1)2

× [(2x− 1)y(y − 1) sin(2πy)− x(x− 1)(2y − 1) sin(2πx)], j = c, s,

whereas f is computed using (6.1) and the momentum equation in (2.1). Note that
these solutions satisfy the mass conservation equation, while boundary and initial
conditions (2.2) are imposed according to (6.1). Also, a non-homogeneous source
term is incorporated on the right hand side of the reaction-diffusion equations and
constructed using the manufactured solutions.

DoF 163 579 2179 8451 33283 526339
avg(iter) 4.2 4.0 4.0 3.8 4.2 4.3

Example 1. Average number of Newton iterations to reach the residual tolerance
tol= 1e− 6, according to the number of degrees of freedom in each refinement

level.

Errors associated to splitting algorithms are avoided by invoking the exact full
Jacobian and performing Newton iterations until convergence at each time step.
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The mesh convergence is investigated by fixing ∆t =1.6e-4 and computing errors
between the exact solutions from (6.1) and approximations obtained with our mixed-
primal method on a sequence of successively refined structured triangulations of Ω,
at the final adimensional time T =5e-3. That is, for each field η, we compute
eh(η) := ‖ηN − ηNh ‖, where ηN = η(·, T ), and ‖ · ‖ is either the H1, H(div), or
L2−norm. On the other hand, the error history associated to the time discretisa-
tion is studied by fixing a small meshsize h = 2.43e-5 and computing accumula-
tive errors up to T = 0.1, and decreasing ∆t. That is, we measure errors in the

`∞(0, t; ·)−norm: E∆t(η) :=
∑N
n=0 ‖ηn − ηnh‖(·). Figure 1 depicts a convergence

analysis for the propose method with respect to meshsize and timestep. All plots
indicate an overall first order convergence in both space and time, as expected from
the involved approximations yielding (5.10). In Table 6 we provide the iteration
count to reach convergence of the Newton method for the first test of spatial ac-
curacy. The values represent the average of required steps at each resolution, and
indicate that the convergence is independent of the refinement level.

Example 2. Bacterial bioconvection. Next we focus on the interaction between
bacteria (with concentration c) and oxygen (described by s) in a small cham-
ber, similar to the case studied in e.g. [23]. Let us define the function r(s) =

−α2 (1 + s−s∗√
(s−s∗)2+ε2

), where s∗ is an oxygen threshold, below which the chemo-

tactic convection is turned off. We consider a semi implicit approximation of the
cross diffusion, the reaction part for the oxygen conservation equation is given by
Gs(c, s) = βcr(s), and the remaining model functions and adimensional parameters
are set as follows: K = K0 +K0η(x) (with K0 = 7700 and η a uniformly distributed
random field), g = (0,−γ)T , s∗ = 0.3, Dc = 0.01, Ds = 0.25, ε = h. The computa-
tional domain is a disk of radius 1

2 centred at ( 1
2 ,

1
2 ), discretised into an unstructured

mesh of 13972 points and 27942 triangular elements, and a timestep of ∆t =1e-3 is
employed. For this example we solve via fixed point iterations the coupling between
the Brinkman problem and the set of reaction-diffusion equations. The system
is initially at rest (zero velocity, vorticity, and pressure), having a concentration of

bacteria near the top of the disk c0 = 1−(1+exp(−50
√

(x− 0.5)2 + (y − 0.9)2))−1,
and an homogeneous oxygen content s0 = 1. In Figure 2 we show three snapshots
(at advanced time) of the obtained numerical solutions on different regimes char-
acterised by α, β, γ. In all cases we observe the species heading to the bottom of
the disk, generating vortical flow around the zones of high concentrations of oxygen
and bacteria. The plots indicate that transitional flow occurs (mainly due to the
triggering of unstable modes), which can be captured in a robust manner by the
numerical method, even in the most unstable regime.

Example 3. FitzHugh-Nagumo dynamics in a porous cavity. This test emphasises
the effects of high contrast permeabilities on the propagation of travelling waves
dictated by the well-known FitzHugh-Nagumo reactions Gc(c, s) = k(s+c(c−a)(c−
1)), and Gs(c, s) = d1c − s. In this prototype model of excitable systems, c and s
represent a membrane voltage, and a recovery variable. We consider a rectangular
domain Ω = (0, 1.8)×(0, 1) filled with 60 large particles (of radii 0.0015 and located

randomly). The forcing terms are g =
√

2d2(1, 1)T and f = 0. Moreover, the
conductivity of the medium is assumed anisotropic and affected by the heterogeneity
of the permeability field (Dc)1,1 = 40K, (Dc)2,2 = 5K, Ds =1e-3, the fluid viscosity
is µ = 0.01, and the remaining parameters are chosen as a = 0.25, d1 = 0.16875,
d2 = 250

√
3, k = −100. The mesh has 28712 elements sharing 14581 nodes, we
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Figure 2. Example 2: snapshots at t = 0.5 of the bioconvection
dynamics for three different regimes characterised by α = β =
0.1, γ = 41.8 (left), α = 0.25, β = 2.5, γ = 418 (centre), and α =
β = 5, γ = 4180 (right). Computed solutions from top to bottom:
bacteria concentration, amount of oxygen, vorticity, velocity, and
pressure.

set a timestep of ∆t =2.5e-3, and run the simulation until T = 6. First, we use
the method of characteristics to treat the advective terms, whereas the reaction
kinetics are considered explicit. The obtained numerical solutions are depicted in
Figure 3. We investigate the convergence properties of the coupling schemes. In a
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Figure 3. Example 3A: snapshots of FitzHugh-Nagumo dynam-
ics on a porous mixture at early (left) and advanced (right) times.
Computed solutions from top to bottom: membrane voltage, vor-
ticity, and velocity.

second round of tests we now use a Picard iterative iterative scheme to couple the
Brinkman and the FitzHugh-Nagumo equations, and consider the reaction terms
implicitly, so that an embedded Newton iteration is applied inside each fixed-point
solution. Figure 4 portrays the evolution of the number of required outer fixed-point
and inner Newton steps to achieve convergence (set with a tolerance of tol=1e− 6
for both schemes). We see that the number of Picard steps needed to converge are
higher at the beginning of the simulation and they slowly decrease, whereas the
Newton steps applied to the nonlinear reaction terms do not change substantially.

We also perform the 3D counterpart of this example, defined in the polygonal
domain Ω = (0, 1.8) × (0, 1) × (0, 0.6) filled with 60 large particles (of radii 1.5e-3
and randomly distributed on Ω) with a permeability 100 times higher than in the
rest of the porous matrix. The forcing term is specified by g = d2(1, 1, 1)T and
f = 0, whereas the conductivity matrix and remaining parameters are chosen as
above. The domain is discretised into an unstructured mesh of 126034 tetrahedral
elements sharing 21952 nodes, and the same timestep as above is employed. All
sides of the box are provided with zero-fluxes for voltage and recovery fields, zero
tangential vorticity, and zero normal velocities, and as initial condition we excite
the bottom left part of the domain. For this test a Newton algorithm is used to
linearise the reaction-diffusion equations, and outer Picard iterations are applied
to couple that system together with the set of Brinkman equations. The obtained
numerical solutions are depicted in Figure 6. As in its 2D counterpart, in this test
we notice that a propagating front for the potential moves towards the positive
x−axis, followed by the slower recovery variable front. Due to the heterogeneity of
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Newton iterations

Picard iterations

Figure 4. Example 3A: Number of inner Newton steps and outer
Picard steps needed to reach residual convergence to a tolerance of
1e-6.

0.32 0.650.03 1.00

c

0.0016 0.00311.5e-06 4.7e-03

.

-3 0-6.27 2.77

p

0.29 0.580.03 0.89

c

0.0013 0.00264.3e-06 3.8e-03

.

0 2.5-3.14 4.32

p

0.29 0.580.03 0.89

c

0.0063 0.0139.0e-06 1.9e-02

.

0.5 3.9-2.92 7.24

p

Example 3B. Approximate membrane voltage, velocity, and pressure for the
FitzHugh-Nagumo dynamics on a porous mixture at early (top), moderate

(middle row), and advanced (bottom panels) times.

conductivities and permeabilities, preferential velocity patterns start to form. We
also notice that vorticity (in this case, we show only its magnitude) clearly marks
the regions of contact between high gradients of potential and recovery field.
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0.58 0.86 1.20.31 1.46 0.4 0.48 0.560.32 0.64

1.1 1.3 1.60.80 1.90
.

1.4 1.7 1.91.09 2.19
.
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Figure 5. Example 4: Computed solutions (cytosolic calcium,
sarcoplasmic calcium, vorticity, velocity, and pressure) for the in-
tracellular calcium dynamics at early (left) and advanced (right)
times.

Example 4. Intracellular calcium-induced calcium release. In closing this section
we present a simulation of the interaction between two species c, s (the concentra-
tions of cytosolic and sarcoplasmic calcium, respectively) inside a cardiac cell. This
phenomenon has been studied in terms of the reacting species alone (cf. [18, 26]),
and also including the active cell contraction while solving for the underlying finite
elasticity equations [29, 38]. In contrast, here we assume that the species interact
with an interstitial fluid occupying the sarcoplasmic reticulum, which is in turn
pictured as a porous medium with a non-homogeneous permeability distribution.
A 2D geometry reconstructed from confocal images is used and a triangular mesh
of 46610 elements and 23741 vertices is generated. The time advancing algorithm
uses a fixed time step of ∆t = 0.01. The process consists in opening 80 channels of
cytosolic calcium located randomly within the myocyte, and observing how these
propagate thorough plasma into the whole cell. We also consider that the perme-
ability is higher in the vicinity of these channels. The minimal reaction-diffusion
model proposed in [18] involves the following specialisation for constant and species-
dependent coefficients:

Dc = (1 +
1

4
η(x))

(
0.6 0
0 0.3

)
, Ds = 0.01,

Gc(c, s) = ν1 − ν2
c2

k2 + c2
+ ν3

c4s2

(k3 + s2)(k4 + c4)
− ν4c,

Gs(c, s) = ν2
c2

k2 + c2
− ν3

c4s2

(k3 + s2)(k4 + c4)
− ν5s,
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where η is a step function assuming the value 1 on disks centred at uniformly
distributed random locations corresponding to the channels, and zero elsewhere.
The influence of calcium patterns into the flow behaviour of the plasma is encoded
in the forcing term for the momentum equation f(s) = γ0|s|(f0 ⊗ f0)∇s, which
might be regarded as the flow-counterpart to the active force proposed in [28].
Here f0 = (1, 0)T is a given preferential direction of plasma displacement, and
the remaining parameters are γ0 = −0.12, ν1 = 1.58, ν2 = 16, ν3 = 91, ν4 = 2,
ν5 = 0.2, k2 = 1, k3 = 4, k4 = 0.75, K = 1e-4(1 + 10η(x)). Snapshots of the
numerical solutions at an early and advanced time steps are collected in Figure 5.
Starting from the open channels, the cytosolic calcium starts to propagate towards
other channels, also following a higher diffusion in the preferential direction f0

(aligned with the x−axis).

7. Concluding remarks. The interaction of viscous flow in porous media and
reaction-diffusion phenomena occur in a variety of applicative scenarios. Here we
have advocated the solvability analysis and the numerical approximation of a special
class of problems related to Brinkman and nonlinear advection-diffusion-reaction
equations. The analysis of the coupled set of equations is framed under the theory
of fixed-point schemes combined with an abstract result for saddle-point problems.
A mixed-primal finite element method has been proposed and we have discussed its
stability and convergence properties. We have provided numerical validation of the
spatio-temporal convergence of the method, and have also addressed the simulation
of a number of biochemically-oriented examples.

Our theoretical framework currently does not account for higher order terms nor
the chemotactical convection simulated in Example 2, and further investigation is
needed in this direction. We also need to cover the dependence of the momentum
force on the gradient of the chemical concentrations (studied numerically in Exam-
ple 4). Regarding other model generalisations, interesting topics be explored include
cross-diffusion effects, nonlinear convective fluxes, a non-laminar flow regime, vis-
cosity depending on the chemical concentrations, or variable density flows. Finally,
we mention that the study of mixed formulations involving embedded saddle-point
problems and the convergence analysis of the associated fully-mixed finite element
schemes can be the subject of suitable extensions to the mathematical aspects of
this contribution.
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